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ABSTRACT

Capturing Finite State Machines (FSMs) with Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language (VHDL) is explored. An overview of
programmabl e logic design methods and languagesis given. Typesof FSMsare described.
Methods of representing FSMs in behavioral VHDL are described, including specific re-
guirementsof theExemplar GALILEO, thePICA VCOMPandVSIM, andthe ALLIANCE
tools. Pitfallsand waysto avoid themarediscussed. A set of guidelinesfor describing FSMs
with state diagramsis presented. Useful behavioral VHDL output formats are presented in-
cluding styles used by the set of VHDL tools examined. A subset of the TROFF PIC file
format for recording graphicsisdescribed. A set of datastructuresfor storing FSM design
databasesisdescribed and amethod of parsing graphical informationinto themispresented.
As part of thisthesis, anew computer program, BRUSEY 20, is designed and implemented
to convert PIC state machine drawingsinto behavioral VHDL. TheBRUSEY 20tool ispres-

ented with an example design run.

Vi



PART 1

INTRODUCTION AND HISTORICAL REVIEW

The field of digital hardware design has advanced substantially in the past
two decades. The primary design vehiclesin the 1970swere discrete logic, small—and me-
dium—scale integration, and simple programmable array logic (PAL) devices. Today, com-
plex programmable logic designs with equivalent gate counts in the tens of thousands are
commonplace. Design capture using boolean equations or afew schematic sheetswas suffi-
cient for the complexity of many programmable logic designsin the 1970s and 1980s, but
today sophisticated design capture tools are not only more convenient, but are becoming es-
sential. Designers require object—oriented tools capable of multiple levels of detail hiding
and ssimplification. High-evel designlanguages (HDLs) similar to those used for computer

software are gaining ground as the tools of choice.

One of the key languages which satisfiestoday’s programmablelogic design
needs is Very High Speed Integrated Circuit (VHSIC) Hardware Description Language
(VHDL). Thislanguage provides a method for both low—level and hierarchical capture in
structural and behavioral modes. Originally VHDL was mainly useful for smulation, but
today VHDL is increasingly supported by synthesis vendors. These vendors offer tools
which can compile abehavioral design into a structural representation and synthesize PLD
and FPGA programming filesor ASIC floorplans. This paper describes the motivation for
thecreation of VHDL, and theapplication of VHDL to programmablelogic design, especial -
ly the design of Finite State Machines (FSMs). Many hardware designers are not familiar
with or prefer not to enter into the software designer mind set required to capture behavioral

design descriptions directly with VHDL. The capture of FSMs can be particularly trouble-
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some. Although thetemplatesfor this processarerelatively straight—forward given atarget
tool, the mechanicsof tranglating an ideainto VHDL statements can become astroublesome

as compiling an FSM into gates by hand.

The purpose of thiseffort isto devise amethod to allow graphical capture of
FSMsusing the familiar state diagram and provide VHDL output suitable for use with spe-
cific smulation and synthesis tools. Graphical capture is performed using a tool such as
XFIG, afree drawing program developed by Supoj Sutanthavibul, et al, which can export
asubset of the TROFF PIC format!. Thisformat was chosen becauseit is simple to under-
stand and parse, it can be edited with afreetool, and it can be converted easily for inclusion

in design documentation.
The VHDL tools considered in this paper are

e Exemplar’s GALILEO synthesistooal,
e the Universite Pierre et Marie Curie ALLIANCE suite, and

e the University of Pittsburgh Integrated Circuit Analysis (PICA) Lab’s
VCOMP/VSIM simulator.

Thesetoolswere chosen becausethey areresentative of toolscurrently in useinindustry and

academia.



PART 2

PROGRAMMABLE LOGIC DESIGN

A. Entry Methods

Theclassicway todesignlogiciswith schematics. Inthepast, digital designs
were simple enough to be expressed using asingle level of hierarchy with discrete compo-
nent symbols connected by signal runs, possibly acrossasmall number of sheets. Schemat-
Icscan beusedinahierarchical way with custom symbol block diagramsand multiplelevels
of decomposition. Functional blocks may be popul ated with text—-documented designs such
asPAL Assembly (PALASM) languagefiles. Thesefilesmay beassimpleasto containonly
logic equations, or may contain FSM descriptions and truth tables. A relatively new mode
of design which canfill inthefunctional block isgraphical entry. Thisisdifferent from sche-
matic entry in that design behavior is captured instead of structure. Thistype of entry can
taketheform of statediagrams, waveform timing diagrams, flow charts, dataflow diagrams,

and so on.

B. High-Level Design Languages

It is debated that the use of atext HDL isthe wave of the future. By thelate
1980s and early 1990s, "less than five percent of all hardware engineers used any HDL at
al2’. Thelargest number of engineers use schematics for design capture. Many have not
yet begun to employ the hierarchical design style described above. Despite these attitudes,
the complexity of designs has driven increased use of HDLs to cleanly partition design re-
sponsibilities and avoid errors. Following are presented a few representative logic design

languages and their capabilities.
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PALASM. This language was pioneered originally in the late 1970s by
Monolithic Memories (MMI), a PLD vendor, for use in capturing PAL equations for their
devices. The basic concept of designing with PALASM isto record combinational and se-
guential equations for the PAL. Few provisions are made for behavioral capture. The de-
signer isresponsiblefor ” compiling” FSMs, decoders, and functionsinto equationsin apro-
cess analogous to early software programming using assembly language. Design block
hierarchy isnot supported. PALASM 2 saw theintroduction of rudimentary functional simu-
lation capability. Although thislanguage wasintroduced to handle aspecific vendor’sfami-
ly of PLDs, PALASM isnow used asanintermediateformat for structural description of dig-

ital circuits because of its simplicity and stability.

ABEL. ABEL isalanguageintroduced in the 1980sby Datal/O, aPLD pro-
gramming vendor. Thislanguage offers an increased emphasis on behavioral specification
andismostly vendor and device independent. Popular digital design elementssuchasFSMs
and truth tables are supported inrelatively rigid formats. 1f adesign’sbehavior doesnot ini-
tially fit into one of the supported categoriesit must be forced to. Functional simulationis
supported for both combinational and sequential logic for design verification. Synthesisis

supported for multiple target devices and technologies.

VHDL. Inthelate 1970s and early 1980s, the U. S. Department of Defense
funded the Very High Speed Integrated Circuit (VHSIC) program to push digital design
technologies. In 1981, the VHSIC Hardware Description Language (VHDL) was proposed
to allow the VHSIC program members and vendors communi cate designsin acommon for-
mat. The Department of Defense issued Requirement 64 of MIL-STD-454 requiring the

use of VHDL in military projects. Sinceits beginnings, VHDL has grown to be very com-
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plex, andincorporatesfeaturesfrom software programming languages such asAdaand other
programmable logic design languages. It has progressed from IEEE STD 1076-1987 and
—1993. There are also offshoot standards for synthesis, libraries, and analog extensions to
VHDL. Itallowsdescriptioninfreeform structural and behavioral modes, makingit flexible
enough to carry the design process from concept to implementation. Because VHDL isan
| EEE standard, many vendorssupport it for capture, simulation, and synthesis. Withitsflex-
ibility comes some unpredictability in resultsfrom one vendor to the next, but asthe under-
standing of VHDL and its simulation and synthesis standards increases, this |anguage will

mature into an all—purpose design tool.

Certainly there are many more proprietary and generic digital design lan-
guagesthan those listed here. The purpose of this section ismerely to introduce aflavor for

what levels of HDL capabilities exist and how they can be used.

C. Synthesis

Once adesign is captured using either a combination of the methods above
or other methods, the programmabl e logic must be synthesized. Two stagesof synthesiscan
beidentified: (a) the conversion of abehavioral design description into gates, flip—flops, or
other macro cells, or (b) the optimized combination of these macro cellsand therequired sig-
nal routing into aspecific floorplan within aparticular silicon architecture. Inasimple PAL
or Programmable Logic Device (PLD), these steps may be so integrally linked asto merge.
For amore complex Field Programmable Gate Array (FPGA) or Application Specific Inte-
grated Circuit (ASIC), thework needed in each step and thetypes of tasksrequired may merit

acompletely separate notion of the two stages, or even the use of more than two stages.



PART 3

BEHAVIORAL VHDL FINITE STATE MACHINE DESCRIPTION
A. Definitions

A Finite State Machine is an agglomeration of combinational logic and
memory cells clocked through multiple states based on input conditions. The state of the
machine is maintained by memory elements, and each output of the machine may be afunc-
tion of theinputsand the machine state. Typically, FSMsaresaidtofall into two categories,
Moore and Mealy. A Moore FSM is one for which all outputs depend only on the current
state. A Mealy FSM isonefor which outputs depend on the state and theinputs. These defi-
nitions can be somewhat open to interpretation. Fletcher3 further qualifies FSM typeswith
letter designations. Meay and Moore FSMs are Class A and B respectively. A Fletcher
ClassC FSM isaMoore FSM withitsoutputstaken directly from the outputs of the memory
elements. An additional classification, a Mealy FSM with registered outputs, may be de-
noted asclassAl. A summary of these classesisgivenin Tablel. lllustrations of Fletcher
FSM classes A, B, and C and the additional classAl aregivenin Figurel. FSMsmay also
be amix of classes. Specifically, some outputs may be registered, and others may be com-
binational. Inaddition, someoutputsmay depend directly ontheinputswhileothersare pure
functions of the state. In such cases, the outputs can be classified with letter designations

in keeping with the convention presented.

Tablel. Finite State Machine Classes

ClassA Combinational—Output Mealy FSM
ClassB Combinational—Output Moore FSM
ClassC Registered—Output Moore FSM
ClassAl Registered—Output Mealy FSM




Combinational State Combinational
Inputs Next State Registers Output Outputs
Decoder Decoder
Class A (combinational output Mealy) FSM
Combinational State Combinational
Inputs Next State Registers Output Outputs
Decoder Decoder
Class B (combinational output Moore) FSM
Combinational State
Inputs Next State Registers Outputs
Decoder
Class C (registered output Moore) FSM
Combinational State
Inputs Next State Registers
Decoder
Combinational State
Next State Registers Outputs
Decoder

Class Al (registered output Mealy) FSM

Figure 1. Finite State Machine Classifications



FSMs are useful in implementing complex sequences of events. These se-
guences may be of aplayback type, wherethe FSM istriggered by asmall number of inputs
to provide acomplex set of output waveforms, or of an action—reactiontype, wherethereare
few inputs and outputs, but the FSM will traverse many states. Another dimension to FSM
typesisthe proportion of required fast responsesto required slow responses, in other words

the FSM may have to wait for long periods between intervals of fast activity.

B. The Finite State Machine Design Process

Thetypical starting placefor aFSM design isto define theinterfaces, which
signalsareinputsand which areoutputs. Next, therequired relationshi psbetweenthesignals
are considered, not only the order of events, but the response times. A quick turn—around
time between input changes and output responses will drive ahigher FSM clock frequency
or will drivethe FSM to beof Mealy type. Theremay belong delaysfor other outputswhich
justify a counter to awaken the FSM. Next, the steps required to perform the task at hand
must be identified: What happensfirst? What responses are required at what times? Are
thereprioritieswhich should divert the FSM fromitscurrent action? Next, itisuseful todraw
atiming diagram, showing inputs, the state of the FSM, and its outputs with time. Once a
satisfactory notion of FSM sequencing is obtained, astate diagram can be drawn. With this
step completed, the designer must synthesize the combinational and sequential logic to per-
form thetask. Oneway isto record the diagram using alanguage like VHDL and feed this
format into an automated design process. Another way isto draw the state diagram using

adrawing tool and have the balance of the process performed automatically.



C. State Encoding

Another concernin FSM designisthe encoding of the state with the memory
elements used. Several encoding methods are in use, each with benefits and drawbacks.
Binary encoding usesthe fewest registersfor agiven number of statesand ismost beneficial
for PAL and PLD designswhereregistersare at apremium. Each stateisnumbered and rep-
resented by the binary equivalent. For example, ”000”, ”001”, ”010”, ”011”, " 100", and so
on. Inaddition to being conservative with registers, this scheme may be easier to interpret
during debugging. Gray—codeis used to minimize glitching of combinational functions of
the state bits, which can be particularly helpful in class B FSMs. Only one bit toggles for
each changein state, for example”000”, 7001, ”011", " 111", " 110", " 100", etc. The draw-
back with this schemeisthat it can be wasteful of bits, especially in FSMswherethereisa
web of possibletransitions between states. One—hot encoding isaschemewhich minimizes
additional logicrequiredto decodethe next state and ismost useful in FPGAswhereregisters
areplentiful. Only oneregister isactiveat atime, so each possibletransition needsonly con-
sider one state bit instead of all of thebits. Anexampleof one-hot encodingis”001”,”010",

"100", etc.

D. Asynchronous Reset

Itisvery important to provide areset signal to the synchronous processesin
aVHDL FSM design. Although simulatorsand sometechnol ogies may be consistent in how
registers power up, it is usually not guaranteed in hardware. It ispossibleto avoid using a

reset if unused statestransition back to known statesand initial glitches aretolerable at start

up.
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E. State Diagrams

The method described herefor drawing state diagramsissimilar to the meth-
ods presented by Fletcher4, Blakeslee®, and Manof. Moore and Mealy implementations of
abounce suppression design are shown shownin Figures2 and 3. These FSMscan beimple-
mented with registered or combinational outputsresulting in thefour possible FSM classes.
The differencesin functionality are illustrated in Figure 4. In practice, glitching occurs on
the output for non—registered Class A and B implementations. States are represented by
circles of arbitrary size with the name of the state denoted by the text string closest to the

center of the circle.

rstn="0

ena='1 AND din="0'

0 slx

dout<="0’; dout<="1";

ena='1 AND din="0'
ena='1 AND din="1

ena='1 ANDdin="1

SOx sl

dout<="0';

dout<="1";

Figure 2. Moore Bounce Suppression Example
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rstn="0" | dout<="0’;

ena='1 AND din="0'|dout <="0';

ena="1 AND din="0 |dout<="1";

din="0"|d but <="1";
ena='1 ANDdin="1 |dout<="0’;
ena='1 ANDdin="1 |dout<="1";
Figure 3. Mealy Bounce Suppression Example
Jrstal ] + + + + + + + + + + + +
| S e I NP s SNy N sy PO s S e Y ey PO o SO
Adin + + + + + + + -|: + + + +
Jsenal | + + + + + + + + +
f"dout_a_ + + + + + + | + + + + + +
fdout_b_ + + + + + + + | + + + + +
_,-"dout_c_ + + + + + + + + + + + +
,-"d.out_al_ + + + + + + + | + + + + +
] + + + + + + + + + + + +
+ + + + + + + + + + + +
+ + + + + + + + + + + +
+ + + + + + + + + + + +
a0.n 00,0 6000 a00. 0 1200.0 1500.0 1800.0

Time (ns)

Figure 4. Bounce Suppression FSM Class Functionality

Transitions between states are represented by lines or arcs with arrowheads
at thedestination state. Theasynchronousreset isdenoted by atransitionwith no sourcestate
and areset signal in its conditional expression. All other transitions are synchronous with

respect toanimplicit clock. Conditional expressionsbased onthe FSM’sinputscausetransi-
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tions. A conditional expression isspecified asatext string at the midpoint of thetransition’s
line or arc. Conditional expressions must be specified such that only one may be true for
transitionsleaving agiven state. Oneexit transition without aconditionisallowed per state,
denoting the default transition. If no default isgiven, it isassumed that the FSM remainsin

the current state if no transitions are valid.

Both Moore FSM classes and registered—output Mealy class FSMs are sup-
ported by the state diagram methodol ogy presented here. Output assignments may be made
in states or with transitions. For a given output, if assignments are made only in states, the
output will be afunction of the state, denoting a Moore FSM. From the diagram, it is not
discernable whether or not output assignmentsin states are registered. This must be speci-
fied externally. If at least one assignment for an output is made with atransition, the FSM
iIsimplied to be Mealy. Outputswhich changewith transitions are specified in the sametext
string as the associated input condition, separated by a vertical bar (pipe). Inthe case of a
state’sdefault transition, an output assignment may still be specified following aninitial ver-
tical bar. For the purposesof theBRUSEY 20 computer program presented i n thispaper, both
conditional expressions and output assignments must use valid VHDL syntax asin Figure

5.

Figure5. Conditional Expression / Output Assignment
din ='0 ANDena ='1 | dout <='0";

State encoding is implicit and left to the downstream synthesis tool. Therefore, a binary

coded value is not needed with a state.
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F. Implementation of Finite State Machines with VHDL

M ost toolswhich accept behavioral VHDL input aresimilar intheir expecta-
tionsof how an FSM isdescribed. Exemplar Logic isacompany which specializesin com-
pilation of behavioral inputs to target specific PLD, FPGA, and ASIC technologies. The
VHDL coding style expected by Exemplar” is used as abaseline for discussion of style dif-

ferences.

The format expected by The University of Pittsburgh PICA SuiteBisslightly
different. Notably:
e Statesmust bedeclared asbit _vect ors.
e Logic variablesand signals are of typebi t instead of st d_| ogi c.

e Labels must be declared.
e Instead of " EVENT,’ RI SI NGor’ FALLI NGmust be used for clock edges.

The most encumbering of thesedifferencesistherequirement of bi t _vect or statedecla-

ration. Fortunately, the context wherethisstandsto do themost harmisgate-level synthesis,

which isnot part of the PICA process.

The Alliancetool set has been devel oped and is supported by the CAO-VLSI
team at Laboratoire MASI, Universite Pierre et Marie Curie (PARIS V1) in Paris, France.
Oneof thetoolsavailablewith Allianceis SY F?, aFSM behavioral to structural synthesizer.
It operates on avery specialized subset of VHDL which they havelogically dubbed FSM10,
Notable nuances of this VHDL subset are:

e Logicvariablesand signalsare of type bi t instead of st d_| ogi c.
e SYFisassisted viapragmasin identifying the clock and state variables.

e Reset is synchronous.
e Instead of ' EVENT,  STABLE is used.
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Unfortunately, Alliance does not directly support registered FSM outputs. The outputs can

be encoded into the state definition, but thisis done through an external coding file.

VHDL Design Units

The starting placefor capturing an FSM with VHDL isthe Entity which con-
tains the functionality of the FSM. This design unit will declare the inputs and outputs to
the FSM. Caremust betaken to usetheappropriate signal typesexpected by thedownstream
synthesistool. Specifically, Exemplar works best with the |EEE standard 1164 st d_| og-
ic and std_| ogi c_vector types, while PICA and Alliance expect bit and
bit _vect or types. Figure 6 showsan entity suitablefor usewith the examplesin Figures

2and 3.

Figure 6. Finite State Machine Entity

ENTITY I pf IS
PORT ( clk : INstd | ogic;
ena : IN std_|ogic;
rstn : IN std_| ogic;
din : IN std_logic;
dout : QUT std_logic
)
END | pf;

The VHDL Architecture is the implementation of the entity’s "black box.”
It containsinternal signals, variables, and most importantly, processes. Most synthesistools,
including Exemplar and Alliance, allow the use of enumerated types for state declaration.

In this case, the architectureis setup in VHDL asatypeasin Figure 7.

Figure7. Enumerated Type State Architecture

ARCHI TECTURE exenplar OF Ipf IS
TYPE state type IS ( s0O, sOx, sl1, slx );
SIGNAL current_state, next_state : state_type;
— other signals onitted

BEG N
— FSM body onitted

END exenpl ar;
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To coercethe synthesistool to use adesired state encoding scheme, the designer can usually

explicitly declare the state register output values asin Figure 8.

Figure 8. Explicit State Architecture

ARCHI TECTURE explicit OF Ipf IS
SIGNAL current_state, next_state :
std_logic_vector ( 1 DOANTO 0 );

CONSTANT sO : std_logic _vector ( 1 DOMNTO O ) := "00";
CONSTANT sOx : std logic _vector ( 1 DOANTOO ) := "01";
CONSTANT s1 : std logic vector ( 1 DOMNTOO ) := "10";
CONSTANT s1x : std_logic_vector ( 1 DOMNNTOO ) := "11";
— other signals onitted

BEG N
— FSM body onitted

END explicit;

With PICA, it is easiest to make the state register type bi t vec and useliteral constantsin

the FSM body because neither type definition nor constants are supported.

The Process is the VHDL design unit which allows sequentially executing
instructions. An architecturewithout aprocessisreduced to astructural description. To en-
able downstream synthesis tools to optimize the implementation, an FSM is best captured
asasingleentity with processes comprising theinternal functionality. Thekey to behavioral
VHDL FSMsisthesensitivity listsof processes. ToaVHDL simulator, achange on asignal
inaprocesses sensitivity list triggersthe functionality of the process. For synthesis, theway
signalsinthe sensitivity list are used implies combinational and sequential logic. A process
withaclock initssengitivity list and internal dependence on the edges of thisclock will syn-

thesize as sequential logic. Figure 9illustrates this principle.
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Figure 9. Sequential Process

ARCHI TECTURE exenplar OF Ipf IS
— declarations omtted
BEG N
registered : PROCESS ( rstn, clk)
BEG N
IF ( rstn =0 ) THEN
current _state <= sO0;
ELSIF ( clk’ EVENT AND clk ="'1" ) THEN
current _state <= next_state;
END | F;
END PRCCESS;
—— other processes omited
END exenpl ar;

A process with multiple random signalsin its sensitivity list with internal boolean expres-

sions involving their instantaneous values will synthesize as combinational logic.

Theimplication of latches can be a pitfall when unintentional. The designer
must make sureto assign avalue to each of acombinational process's” output” signalswith
each execution of the process, otherwise combinational loops may be created. The codein

Figure 10 shows how this can happen.

Figure 10. Unintentional Combinational L oop

ARCHI TECTURE | oop OF sinple IS
BEGA N
wong : PROCESS ( data_in )
BEG N
IF ( data_in ='1" ) THEN
data_out <= '0";
END | F;
END PROCESS;
END [ oop;

Thisis somewhat subtle, but note that whenever the processistriggered duetodat a_i n
becoming zero, thereisno action taken. Thisusually synthesizesto an OR gate with output

dat a_out andinputsdat a_i n and dat a_out . The feedback in thisimplementation

is undesirable.
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VVHDL Finite State Machine Topologies

For FSM design, many process topologies yield desirable results given the
ideal synthesistool. With the specifictoolsaddressed by thispaper, there are specific topol o-
gieswhich arerecommended. Typically two processes are used, one combinational and one

sequential.

For aclassA (combinational—output Mealy) FSM, the combinational process
isused to decode the next state and the current outputs given the current state and the inputs.
The synchronous process is used to clock the state bits. Thistype of FSM is not generated
by the BRUSEY 20 computer program presented in this paper. When BRUSEY 20 encoun-
ters output assignmentsin transitions asin Figure 3, it assumes the outputs to be registered.
Exemplar, PICA, and Allianceall supportit. Examplesof the Exemplar, PICA, and Alliance
stylesfor aclass A implementation of the FSM in Figure 3 aregivenin Figures 11, 12, and

13 below.



Figure 11. Exemplar Class A (combinational-output Mealy) FSM

ARCHI TECTURE exenplar_a OF Ipf IS

TYPE state_type IS ( sOx, sO, silx, sl );
SIGNAL current_state, next_state : state_type;

BEG N

registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn =0 ) THEN
current _state <= sO0;
ELSIF ( clk’ EVENT AND clk ="'1" ) THEN
current _state <= next_state;
END | F;
END PRCCESS;

transitions : PROCESS ( current_state, ena, din)
BEG N
CASE current_state IS
VWHEN sOx =>
IF ( ena="1 ANDdin ="'0 ) THEN
dout <="'0
next _state <= sO0;
ELSIF ( ena ='1 ANDdin ='1 ) THEN

dout <="1";
next state <= sl
ELSE
dout <=" 0’
next _state <= sOx;
END | F;
WHEN s0 =>
IF ( ena="1 ANDdin="1 ) THEN
dout <="'0
next _state <= sO0x;
ELSE
dout <=’ O’
next _state <= sO0;
END | F;
WHEN sl1x =>
IF ( ena="1 ANDdin ="'1 ) THEN
dout <="1";

next state <= sl

ELSIF ( ena ='1 ANDdin ='0" ) THEN
dout <="'0
next _state <= sO0;

ELSE
dout<="1
next _state <= slx;

END | F;

WHEN s1 =>
IF ( ena="1 ANDdin ="0 ) THEN

18



dout <= '1";
next _state <=
ELSE
dout<=" 1’
next _state <=
END | F;
END CASE;
END PRCCESS;
END exenpl ar _a;

slx;

sl;

19

Figure 12. PICA Class A (combinational—output Mealy) FSM

ARCHI TECTURE pica_a OF Ipf IS
SI GNAL present _state, next_s
LABEL registers, transitions

BEGA N
registers : PROCESS ( clk, r
BEG N
IF ( rstn ='0" ) THEN

present _state <= "00";
ELSIF ( clk’RISING ) THEN

present _state <= next_st
END | F;
END PRCCESS;
transitions : PROCESS ( pres
BEGA N
CASE present_state IS
WHEN " 00" => — sO0
IF ( ena =1 AND din
dout <="'0’
next state <= "017;
ELSE
dout <="'0
next _state <= "00";
END | F;
WHEN " 01" => — sOx
IF ( ena ='1 ANDdin
dout <='1";

next _state <= "10",;
ELSIF ( ena ='1" AND
dout <="'0
next _state <= "00”;
ELSE
dout <="'0
next _state <= "01";
END | F;
WHEN " 10" => — s1
IF ( ena e
dout <= "'1";
next _state <= "11",

AND di n

tate : bitvec
stn )
— s0
at e;
ent_state, ena, din)
='1 ) THEN
— sOx
— s0
='1 ) THEN
— sl
din =’0 ) THEN
— s0
— sO0x
='0" ) THEN
— slx
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ELSE

dout <="'1";

next state <= "10"; — si
END | F;

WHEN " 11" => —— slx
IF ( ena="1 ANDdin ='0" ) THEN

dout <=0
next state <= "00"; — sO
ELSIF ( ena ='1 AND din ='1 ) THEN
dout <="'1";
next _state <= "10"; — sl
ELSE
dout <= '1";
next _state <= "11"; — slx
END | F;
END CASE
END PRCCESS;
END pica_a;

Figure 13. Alliance Class A (combinational—output Mealy) FSM

ARCHI TECTURE al liance_a OF Ipf IS
TYPE state type IS ( sO, sOx, sl1, slx );

— pragma CLOCK cl k
— pragma CUR_STATE current_state
—— pragma NEX_STATE next_state

SIGNAL current_state, next_state : state_type;
BEG N
— Synchronous State Registers
— (Note synchronous reset)
registers : PROCESS ( clk )
BEG N
IF ( clk =1 AND NOT cl k’ STABLE ) THEN
current _state <= next_state;
END | F;
END PRCCESS;

— Conbi national State Transitions
transitions : PROCESS ( rstn, current_state, ena, din)
BEA N
—— process to update the current state;
IF ( rstn =0 ) THEN

dout <= '0’
next _state <= sO;
ELSE

CASE current_state IS
VWHEN sO =>
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IF ( ena="1 ANDdin ="1 ) THEN
dout <=0
next state <= sO0x;

ELSE
dout <="'0
next _state <= sO0;

END | F;

VWHEN sOx =>

IF ( ena ="1 ANDdin ="'1 ) THEN

dout <="'1";

next _state <= sl
ELSIF ( ena ='1 AND din ='0" ) THEN

dout <='0’
next _state <= sO;
ELSE
dout <="'0
next _state <= sO0x;
END | F;
WHEN s1 =>
IF ( ena ="1 ANDdin ="'0" ) THEN
dout <="'1";
next _state <= slx;
ELSE
dout <= '1";
next _state <= sl
END | F;
WHEN sl1x =>
IF ( ena="1 ANDdin ="0 ) THEN
dout <="'0’

next _state <= sO;
ELSIF ( ena ='1 AND din ='1 ) THEN

dout <="'1";
next _state <= sl
ELSE
dout <="'1";
next _state <= slx;
END | F;
END CASE
END I F;
END PRCCESS;

END al | i ance_a;
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For a class B (combinational—output Moore) FSM, the combinational pro-
cess decodes the next state based on current state and inputs, but only depends on the state
to decode the current outputs. It is supported by Exemplar, PICA, and Alliance in astyle
specific to each tool. The Exemplar style of this type of FSM can be generated by the
BRUSEY 20 computer program described in this paper. When the BRUSEY 20 tool encoun-
tersoutput assignmentsin states, it assumes them to be combinational. Examples of the Ex-
emplar, PICA, and Alliance style implementations for the state diagram in Figure 2 are

shown in Figures 14, 15, and 16, respectively.

Figure 14. Exemplar Class B (combinational-output Moore) FSM
ARCHI TECTURE exenplar_b OF Ipf IS

TYPE state type IS ( sOx, sO, silx, sl );
SIGNAL current_state, next_state : state_type;

BEG N

registers : PROCESS ( clk, rstn)
BEA N
IF ( rstn ='0") THEN
current _state <= sO;
ELSIF ( clk’ EVENT AND clk = '1" ) THEN
current _state <= next_state;
END | F;
END PRCCESS;

transitions : PROCESS ( current_state, ena, din)
BEGA N
CASE current_state IS
WHEN sOx =>
dout <=" 0’
IF ( ena ="1 ANDdin ="'0 ) THEN
next _state <= sO;
ELSIF ( ena ='1 ANDdin ="'1 ) THEN
next _state <= sl
ELSE
next _state <= sOx;
END | F;
WHEN sO0 =>
dout <=" 0’
IF ( ena="1 ANDdin="1 ) THEN
next _state <= sO0x;



ELSE
next _state <= sO;
END | F;
WHEN sl1x =>
dout<=" 1’
IF ( ena="1 ANDdin="17
next _state <= sl
ELSIF ( ena =1 AND din =
next _state <= sO0;
ELSE
next _state <= slx;
END | F;
WHEN s1 =>
dout <=" 1’
IF ( ena="1 ANDdin="0
next _state <= slx;
ELSE
next _state <= sl
END | F;
END CASE
END PROCESS;

END exenpl ar _b;
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) THEN

) THEN

) THEN

Figure 15. PICA Class B (combinational—output M oore) FSM

ARCHI TECTURE pica_b OF Ipf IS
SIGNAL present_state, next_state :
LABEL registers, transitions;

BEGA N
registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn =0 ) THEN

present _state <= "00"; — sO
ELSIF ( clk’RISING) THEN
present _state <= next_state;

bi tvec;

END | F;
END PRCCESS;
transitions : PROCESS ( present_state, ena, din)
BEG N
CASE present_state IS
WHEN " 00" => — sO0
dout <="'0
IF ( ena="1 ANDdin="1 ) THEN
next _state <= "01"; — sOx
ELSE
next _state <= "00"; — sO
END | F;
WHEN " 01" => — sOx
dout <="'0
IF ( ena="1 ANDdin ="1 ) THEN



next _state <= "10"; — sl
ELSIF ( ena ='1 AND din ='0" ) THEN
next state <= "00"; — sO
ELSE
next _state <= "01"; — sOx
END | F;
WHEN " 10" => — s1
dout <="'1";
IF ( ena="1 ANDdin ="'0" ) THEN
next _state <= "11"; — six
ELSE
next _state <= "10"; — sl
END | F;
WHEN " 11" => — six
dout <="'1";
IF ( ena="1 ANDdin ="'0" ) THEN
next _state <= "00”"; —— sO
ELSIF ( ena ='1 ANDdin ='1 ) THEN
next _state <= "10"; — sl
ELSE
next _state <= "11"; — slx
END | F;
END CASE;
END PRCCESS;

END pi ca_b;

Figure 16. Alliance Class B (combinational—output Moore) FSM

ARCHI TECTURE al liance_b OF Ipf IS
TYPE state type IS ( s0O, sOx, sl1, slx );

— pragma CLOCK cl k
—— pragma CUR_STATE current_state
— pragma NEX_STATE next_state

SIGNAL current_state, next_state : state_type;
BEG N
—— Synchronous State Registers
— (Note synchronous reset)
registers : PROCESS ( clk )
BEG N
IF ( clk =1 AND NOT cl k’ STABLE) THEN
current _state <= next_state;
END | F;
END PRCCESS;

— Conbi national State Transitions

transitions : PROCESS ( rstn, current_state, ena, din)

BEG N

24
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IF ( rstn =0 ) THEN
dout <="'0’
next _state <= sO;
ELSE
CASE current_state IS
WHEN sO0 =>
dout <='0’
IF ( ena ="1 ANDdin ="'1 ) THEN
next state <= sO0x;
ELSE
next _state <= sO0;
END | F;
WHEN sOx =>
dout <="'0’
IF ( ena ='1 AND din
next _state <= sl
ELSIF ( ena ='1 AND din ='0" ) THEN
next _state <= sO0;
ELSE
next state <= sO0x;
END | F;
WHEN s1 =>
dout <='1";
IF ( ena="1 ANDdin ="'0" ) THEN
next _state <= slx;
ELSE
next _state <= sl
END | F;
WHEN sl1x =>
dout <="'1";
IF ( ena ='1 AND din
next _state <= sO0;
ELSIF ( ena ='1 AND din ='0" ) THEN
next _state <= sl
ELSE
next _state <= slx;
END | F;
END CASE
END I F;
END PRCCESS;

"1 ) THEN

0" ) THEN

END al | i ance_b;
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With aclass C (registered—output Moore) FSM, description is possible with
only one sequential process which controlsthe outputs and steps the state bits. Thistype of
FSM is supported by Exemplar and PICA and is not directly supported by Alliance. The
BRUSEY 20 program presented in this paper does not support this class of FSM. When
BRUSEY 20 encounters output assignmentsin states such asin Figure 2, it assumesthem to
be combinational. The Exemplar and PICA styles of the FSM in Figure 2 are shownin Fig-

ures 17 and 18.

Figure 17. Exemplar Class C (registered—output Moore) FSM
ARCHI TECTURE exenplar_c OF Ipf IS

TYPE state type IS ( sOx, s0, silx, sl );
SIGNAL current_state, next_state : state_type;
SI GNAL next _dout : std_logic;

BEG N

registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn ='0") THEN
current _state <= sO0;
dout <="'0
ELSIF ( clk’ EVENT AND clk = '1" ) THEN
current _state <= next_state;
dout <= next_dout;
END | F;
END PRCCESS;

transitions : PROCESS ( current_state, ena, din)
BEGA N
CASE current_state IS
WHEN sOx =>
next dout <='0’
IF ( ena ="1 ANDdin ="'0 ) THEN
next _state <= sO;
ELSIF ( ena ='1" AND din
next _state <= sl
ELSE
next _state <= sO0x;
END | F;
WHEN s0 =>
next dout <=' 0’
IF ( ena="1 ANDdin ="1 ) THEN
next _state <= sO0x;

"1 ) THEN



ELSE
next _state <= sO;
END | F;
WHEN sl1x =>
next dout<="1’
IF ( ena="1 ANDdin="17
next _state <= sl
ELSIF ( ena =1 AND din =
next _state <= sO0;
ELSE
next _state <= slx;
END | F;
WHEN s1 =>
next dout<=1’
IF ( ena="1 ANDdin="0

next _state <= slx;
ELSE
next _state <= sl
END | F;
END CASE
END PRCCESS;
END exenpl ar_c;
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) THEN

) THEN

) THEN

Figure 18. PICA Class C (registered—output Moore) FSM

ARCHI TECTURE pi ca_c OF | pf
SI GNAL present_state,
SI GNAL next _dout bit;

LABEL registers, transitions;

I'S

BEGA N
registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn =0 ) THEN
dout <="'0

present _state <= "00"; — sO
ELSIF ( clk’RISING ) THEN
dout <= next _dout;
present _state <= next_state;
END | F;
END PRCCESS;

transitions :
BEG N
CASE present_state IS
VWHEN " 00" => — sO0
next dout <="'0’
IF ( ena ='1 ANDdin =
next _state <= "01",;
ELSE
next _state <= "00”;
END | F;

— s0

next _state :

PROCESS ( present_state,

"
— sO0x

bi tvec;

ena, din)

) THEN



WHEN " 01" => — sOx
next _dout <= '0’
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IF ( ena ="1 ANDdin ="'1 ) THEN
next _state <= "10"; —— sl
ELSIF ( ena ='1 ANDdin ='0" ) THEN
next _state <= "00”; — sO
ELSE
next state <= "01"; — sOx
END | F;
WHEN " 10" => — sl
next dout <= '1";
IF ( ena="1 ANDdin ="'0" ) THEN
next _state <= "11"; — slx
ELSE
next state <= "10"; — si
END | F;
WHEN " 11" => — six
next dout <= '1";
IF ( ena ="1 ANDdin ='0 ) THEN
next state <= "00"; — sO
ELSIF ( ena ='1 AND din ='1 ) THEN
next _state <= "10"; — sl
ELSE
next _state <= "11"; — slx
END | F;
END CASE
END PRCCESS;

END pica_c;
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A class A1l (registered output Mealy) FSM may have two processes, a se-
guential processfor the states and outputs, and acombinational processfor transitions. Ex-
emplar and PICA support thisclass, while Alliance doesnot. Thistype of FSM may be gen-
erated by the BRUSEY 20 computer program presented in this paper. When BRUSEY 20
encoutersoutput assignmentsin transitions, it assumesthemto beregistered. The Exemplar
styleisshown in Figure 19, whilethe PICA styleisshownin Figure 20. Inthisimplementa-
tion, an interim combinational signal is declared to feed a register for a given output.

Figure 19. Exemplar Class Al (registered—output Mealy) FSM
ARCHI TECTURE exenplar_al OF Ipf IS

TYPE state type IS ( sOx, s0, silx, sl );
SIGNAL current_state, next_state : state_type;
SI GNAL next _dout : std_logic;

BEGA N
registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn ="'0" ) THEN
dout <="'0

current _state <= sO0;
ELSIF ( clk’ EVENT AND clk = '1" ) THEN
dout <= next_dout;
current _state <= next_state;
END | F;
END PRCCESS;

transitions : PROCESS ( current_state, ena, din)
BEGA N
CASE current_state IS
WHEN sOx =>
IF ( ena="1 ANDdin="0 ) THEN
next _dout <= '0’
next _state <= sO;
ELSIF ( ena ='1" AND din
next dout <= '1";
next _state <= sl
ELSE
next dout <='0’
next _state <= sO0x;
END | F;
VWHEN sO =>
IF ( ena="1 ANDdin="1 ) THEN

1" ) THEN



next _dout <= "'0’
next _state <= sO0x;
ELSE
next dout <='0’
next _state <= sO0;
END | F;
WHEN s1x =>
IF ( ena='1 ANDdin ="'1 ) THEN
next dout <= '1';
next _state <= sl
ELSIF ( ena ='1 AND din ='0" ) THEN
next _dout <="'0’
next _state <= sO;
ELSE
next dout<=1";
next _state <= slx;
END | F;
VWHEN s1 =>
IF ( ena="1 ANDdin="'0 ) THEN
next dout <= '1’;
next _state <= slx;
ELSE
next dout<="1’
next _state <= sl
END | F;
END CASE
END PRCCESS;
END exenpl ar_al

Figure 20. PICA Class A1l (registered—output Mealy) FSM

ARCHI TECTURE pica_al OF Ipf IS
SI GNAL present _state, next _state : bitvec
SI GNAL next _dout : bit;
LABEL registers, transitions;

BEG N
registers : PROCESS ( clk, rstn)
BEG N
IF ( rstn =0 ) THEN
dout <="'0’
present _state <= "00"; — sO

ELSIF ( clk’RISING) THEN
dout <= next_dout;
present _state <= next_state;
END | F;
END PROCESS;

transitions : PROCESS ( present_state, ena, din)
BEA N
CASE present_state IS

30
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WHEN " 00" => — s0
IF ( ena ="1 ANDdin ="'1 ) THEN
next dout <= '0’

next _state <= "01"; —— sOx
ELSE

next _dout <="'0’

next _state <= "00"; — sO
END | F;

WHEN " 01" => — sOx
IF ( ena="1 ANDdin="1 ) THEN
next dout <= '1";
next _state <= "10"; — sl
ELSIF ( ena ='1 AND din ='0" ) THEN
next _dout <= '0’

next state <= "00"; — sO
ELSE

next dout <="'0’

next _state <= "01"; — sOx
END | F;

WHEN " 10" => — sl
IF ( ena='1 ANDdin ='0" ) THEN
next dout <= "'1";

next _state <= "11"; —— slx
ELSE

next _dout <= '1’;

next state <= "10"; — sl
END | F;

WHEN " 11" => — sl1x
IF ( ena="1 ANDdin ="'0 ) THEN
next _dout <= '0’
next state <= "00"; — sO
ELSIF ( ena ='1 ANDdin ='1 ) THEN
next dout <= "'1";
next _state <= "10"; — sl
ELSE
next _dout <= '1’;
next _state <= "11"; — slx
END | F;
END CASE;
END PRCCESS;
END pica_al

As can be seen, the variations on the theme of FSM behavioral description
aremany. Theformats presented here are those recommended by the authorsof their respec-
tivetarget tools. Itisundoubtedly true that there are many more ways to describe the same

FSM with identical or better results with these and other tools.



PART 4

THE MECHANICS OF CONVERSION

A. PIC Graphics Description |nput Format

The input to the BRUSEY 20 computer program presented in this paper isa
subset of the TROFF PIC fileformat. Themajor object typesused arelisted below with their
meanings in the context of this process. Each linein the PIC input is a separate statement
unlike VHDL where multi-ine statements are terminated with a semicolon. All locations
and measurementsin the PIC input are specified in fixed point format. A circleinthePIC
input defines a state in the VHDL output. The format of the PIC circle statement is given

in Figure 21.

Figure2l. Circle
circle at XC,YC rad R

where XC, YCisthecenter of thecircleand Ristheradius. Anarcor lineintheinput defines
atransition inthe output. Only single—segment arcs and lines are supported. Theformat of

the arc statement is given in Figure 22.

Figure22. Arc
arc {<-,—>} at XC, YC from XS, YS to XE, YE [cw]

where <— denotesthat the arrow head is at the”from” end in the statement and —> denotes
thearrow head isat the”to” end. XC, YCisthe center of the circle of whichthearcis part,
XS, YSisthefirst endpoint of the arc, and XE, YE isthe second endpoint. If cwappears at
the end of the statement, the arc swings clockwise between the first and second endpoints

instead of counter—clockwise. The format of the line statement is given in Figure 23.

Figure23. Line
line {<—,—>} from XS, YS to XE, YE

32
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where <— denotesthat the arrow head is at the " from” end in the statement and —> denotes
thearrow head isat the”to” end. XS, YSisthefirst endpoint of thelineand XE, YE isthe

second endpoint. The format of the text string statement is given in Figure 24.

Figure24. Text String
"[\sNI[[\fF]S[\fF]” at XO YO [{l]ust,rjust}]

where Nisthefont size, F isafont style, and XO, YOisthe origin of the string. rj ust or
| j ust indicateright or left justification with respect the origin with adefault of center justi-

fication if neither is given.

B. Internal Finite State Machine Data Base Structures

A set of data structures are used to store the FSM data base during

BRUSEY 20 execution. Four structurestypesstore states, transitions, and stringsasfollows.

Tablell. State Structure

string structure pointer for state name initially blank
center location

radius

string structure pointer for first assignment in linked list for the state | initially blank
first transition pointer in linked list for this state initially blank

next state pointer in overall linked list of states initially blank




Tablelll. Transition Structure

Center location

"From” location

"From” state pointer initially blank

"To” location

"To” state pointer

initially blank

string structure pointer for conditional expression / output assignment |initially blank

next transition pointer in overall linked list of transitions initially blank

next transition pointer in the linked list for the state initially blank

Table V. String Structure

origin location

justification (left, center, right)

text string
next string structure pointer in overall linked list of strings initially blank
next string pointer in linked list for the state initially blank

Table V. Input and Output Signal Structure

identifier text
string

flag indicating whether the input will be the asynchronous reset signal
or whether the output will be registered

As an instance of each of the object type is encountered in the PIC input,

memory isallocated to storeit. Additional instancesare added inalinked list format. This

scheme allows the most flexible storage of the largest and most complicated FSMs possible

inthe memory space available. Thereisasdlight penalty in speed of execution, but no space

Is wasted with empty object structures.
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C. The Conversion Process

With the input and output formats and the internal data base structures pres-
ented, what remainsto be described isthe process employed by BRUSEY 20 to generate be-

havioral VHDL from a PIC drawing.

In order to trandate the input PIC file into VHDL, several steps are taken.
First, theinput is read by the parser, the part of the BRUSEY 20 program which recognizes
syntax and is triggered by language constructs. The parser populates the design data base
with the graphical input information, and then control is passed to the filler, which makes
calculations and relates the data base elements to one another. Next, the 1O finder sifts
through all stringsin the design to extract inputs and outputsusingaVHDL lexical analysis
and grammar specification. The traverser operates next, traversing through all structure
instancesand ultimately writing output based on the generated database. Thedetailsof these

steps are expounded below.

Parsing PIC Graphics Description |nput Format

ThePICinput isparsed using aFlex—and Bison—based parser. Flexisacom-
puter program which takesin adescription of the tokensto befound in theinput and desired
actions and puts out C code to perform thislexical analysis. Bison isacomputer program
that takes in a description of the grammar which the tokens are arranged in and puts out C
codeto perform the parsing. The code generated by Bison callsthe code generated by Flex.
Oncethe code hasbeen generated, it may be compiled andincluded inamain program. This
portion of the process creates the linked lists of data structures asit parsesthe input. Only

the geometrical information available in the PIC input is stored during this step.
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Filling the Design Data Base

The next step is to associate the instances created in the previous step with
oneanother. First, stringsare associ ated with states based on the distance between the origin
of thestring and the center of the state’scircle. Theratio between thedistancefromthecenter

to the string and the radius must be below afixed value.

Next, conditional expression/ output assignment strings are associated with
transitions. Theorigin of the string must be within afixed distance from the midpoint of the
arc or line. The midpoint of the arc or lineis calculated using geometrical methods and is
guaranteed to beonthecurveor line. If astringisnot found for agiventransition, that transi-

tion islater flagged as the default for its " from” state.

The transitions ends are then matched with states. The end of the transition
must be inside a circle concentric with the state’s circle, but with aradius larger by afixed

amount. Connectivity is checked as described above in the description of state diagrams.

Next, each Moore output string isassociated with astate which encompasses

itsorigin location. Strings which are not associated with states or transitions are ignored.

Identifying Inputs and Outputs

Each state and transition is processed by sending each associated string to a
secondary parser. This parser processes VHDL expressions and assignments and is based
on different Flex lexical analysis and Bison grammar files. In other words, there are two
parsersused by theBRUSEY 20 program, aPIC parser andaVHDL parser. TheVHDL pars-
er isgiven astarting token which identifies whether agiven string is associated with a state
or atransition. The parser then scanstransition and state strings seeking design inputs and

outputs. If an output isfound in atransition, it ismarked asregistered to support aclassAl
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(registered—output Mealy) FSM. If an input isfound in the asynchronous reset transition,
itismarked for inclusion in the sensitivity list of the registered process of the VHDL archi-
tecture. Outputsfound in states are marked asnon—registered to support aclass B (combina-

tional—output Moore) FSM.

Generating VHDL Output

Only the generation of Exemplar—style behavioral code is described in this
section, asthisistheonly stylesupported for now. Generation of theother stylesof behavior-

a code would be similar.

Thefirst step in generating the behavioral VHDL output isto print the entity
header. The input and output signals are written, including the implicit clock signals with
thelir proper types (I N, OUT, or | NOUT). | NOUT types are generated when asignal appears

in both the list of inputs and the list of outputs generated above.

Next, the architectureis printed. An enumerated typeisdefined with names
of each of the statesin thelinked list. Signalsfor the current state and the next state are de-

clared, followed by any combinational output terms required for registered outputs.

Theprocessusedto reset the FSM and clock theregistersisprinted next. Any
input signals that were found in the reset transition are printed in the sensitivity list. State-
ments to advance the state are printed. If the FSM isaclass Al (registered—output Mealy)

FSM, statements to clock the associated output registers are printed.

Next, the processto decode the next state and next outputsis printed. Within
a CASE statement, a VWHEN statement is printed for each state. Within the WHEN statement,
an algorithm is used to correctly print | F, THEN, EL SE statementsto cover al transitions

leaving the given state and all associated outputs. Outputsare printed within| F statements
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if the FSM isclassA1l, and outsidethe | F statement if the FSM is class B for those outputs.
If adefault transition isfound, its processing is deferred until all other transitions from the
state have been handled. Thisway, thedefault transitionisprinted within an EL SE statement
or aloneif thereisonly onetransition. Thefirst transition is printed with an | F statement,
whereas additional transitions (except thedefault) are printed with ELSI F statements. Once
all transitions have been handled, the | F statement (if any) is capped off withan END | F.

Finaly, the CASE statement and the process are closed and the architecture is ended.



PART 5

RESULTS

A. Description

The state diagram for the test case isthe example in Figure 25. Thisdesign
isaclass Al (registered—output Mealy) implementation of a TPLH-TPHL stretcher. This
design delays turn—on and turn—off of the output based on the state of the input. Turn—on
delay iscontrolled by the number of statesintheleft columninthe state diagram and turn—off

delay is controlled by the right column.

The test case state diagram was drawn with XFIG and exported to PIC for-
mat. Next, the BRUSEY 20 computer program presented in this paper was run on the PIC
fileto yield abehaviora VHDL file. The design was then synthesized using Exemplar’s
GALILEO toyield astructural VHDL output file. GALILEO was then used to synthesize
the design with one-hot state encoding in an Actel ACT2 device. Then, aschematic repre-
sentation of the structure was printed. As can be seen from the schematics bel ow, the FSM

output, ”O”, isregistered and there is one register for each state.
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I=00<='0;
I=00<="1’;

rst_ n="0'|0<='0";

I=00<="1";
I='1]0<="0';

Figure 25. State Diagram for Test Case



B. PIC File Representation

The PIC file representation is shown in Figure 26.

Figure26. PIC filefor Test Case

. PS

.ps 10
arc —>
arc —>
arc —>
arc -—>
arc -—>
arc —>
arc —>
arc —>
arc -—>
arc -—>
arc <-
arc —>
arc -—>
arc —>
arc —>
arc <-
arc -—>
arc <-—
arc <-—
arc -—>
arc -—>
arc -—>
arc <-—
arc <-—
circle
circle
circle
circle
circle
circle
circle
circle
circle
circle
circle
circle

at
at

BRPARRRNNNNN

GNP WONNRPWOWRAPMNOOOUINOOOOOWWWNNDNDN

. 126, 5.
. 127, 4.
. 126, 3.
. 125, 1.
. 420, 5.
. 755, 4.
. 929, 3.
. 188, 1.
. 187, 3.
. 188, 4.
. 556, 6.
. 189, 8.
. 189, 6.
. 143, 7.
. 449, 7.
. 595, 1.
. 631, 3.
. 991, 5.
. 367, 4.
. 742, 3.
. 285, 3.
. 317, 2.
. 868, 7.
. 213, 0.
. 343, 6.
. 343, 5.
. 343, 3.
. 343, 2.

343, 0.
971, 1.
971, 2.
971, 3.
971, 8.

. 971, 9.
. 971, 5.
. 971, 6.

line <— from2.136,7.036 to
"\s10\f RsOb\f P" at
"\s10\f RsOc\fP" at
"\s10\f RsOd\f P’ at
"\s10\f RsOe\f P’ at
"\s10\f Rs1b\f P" at
"\s10\fRslc\fP" at

561 from 5. 288, 3.
045 from 2. 474, 7.
487 from 5. 286, 0.
707 rad 0. 358
276 rad 0. 358
844 rad 0. 358
410 rad 0. 358
979 rad 0. 358
016 rad 0. 358
448 rad 0. 358
880 rad 0. 358
125 rad 0. 358
557 rad 0. 358
313 rad 0. 358
745 rad 0. 358
1. 551, 8.
2.318,5. 266
2. 318, 3. 860
2.318, 2. 442
2.306,1.017
4.950, 2. 468
4,939, 3.908

992 from 2. 657, 6.
559 from 2. 657, 5.
127 from 2. 657, 3.
695 from 2. 657, 2.
267 from 1. 969, 3.
620 from 1. 969, 2.
927 from 1.969, 0.
732 from 4. 658, 1.
165 from 4. 658, 2.
597 from 4. 658, 4.
024 from 2. 025, 6.
841 from 4. 658, 8.
029 from 4. 658, 5.
463 from 4.612, 6.
433 from 4.612, 9.
868 from 5.139, 1.
107 from 2. 655, 0.
201 from 5. 310, 0.
520 from 5. 319, 1.
919 from 5. 288, 6.
244 from 5. 288, 5.

529
095
664
232
861
455
992
195
628
060
561
304
491
925
600
334
832
931
042
730
268
805
081
848

645

DNUUCUOURMUONDEAIMNDEARAMNRERRNNNN

. 657, 5.
. 657, 4.
. 657, 2.
. 657, 1.
. 969, 6.
. 969, 6.
. 025, 6.
. 658, 2.
. 658, 3.
. 658, 5.
. 025, 5.
. 658, 9.
. 658, 6.
. 612, 8.
. 306, 7.
. 232, 2.
. 658, 0.
. 288, 9.
. 288, 8.
. 308, 1.
. 288, 1.
. 231, 1.
. 676, 6.
. 892, 0.

455
022
590
157
673
786
899
269
701
134
487
379
566
000
069
287
855
488
025
125
219
275
698
668

cw
cw
cw
cw
cw
cw
cw
cw
cw
cw

cw
cw
cw

cw
cw
cw
cw
cw
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"\'s10\fRs1d\fP" at 4.950, 5. 337
"\s10\f Rsle\fP" at 4.961, 6.788
"\s10\f Rs1f\fP" at 4.950, 8. 087
"\s10\fRs1g\fP" at 4.950, 9.584
"\s1O\fRI =" 0" | O<="1";\fP" at 4.415,1.761 rjust
"\s1O\fRI =" 0" | O<="1";\fP" at 4.405,4.697 rjust

"\s1O\fRI="1"| O<="0";\fP" at 2.930, 4.481 |j ust
"\s10\fRI="0" | O<="1";\fP" at 4.382,6.064 rjust
"\s1lO\fRI="1"| O<="0";\fP" at 2.915,3.036 |just
"\s1O\fRI =" 0" | O<="1";\fP" at 4.404,3.195 rjust
"\s1O\fRI =" 0" | O<="1";\fP" at 4.354,7.481 rjust

"\s10\fRsOa\fP" at 2.312,6.717

"\s10\fR O<="0";\fP" at 0.960,4.556 |just
"\s10\fR O<=" 0" ;\fP" at 0.409, 3.881 |just
"\s1O\fRI="1"| O<="0";\fP" at 2.937,1.574 |just
"\s10\fR O<="1";\fP" at 5.876,2.599 rjust
"\s10\fR O<="1";\fP" at 6.090,3.195 rj ust
"\s10\fR O<="1";\fP" at 6.506, 3.814 rjust
"\s10\fR O<="1";\fP" at 6.878,4.444 rjust
"\s10\fR O<="1";\fP" at 7.350,5.209 rjust
"\s1O\fR O<="1";\fP" at 5.269,1.789 rjust
"\s1O\fRrst_n="0"|O<="0";\fP" at 1.804,7.740 rjust
"\s10\fRsla\fP" at 4.950,1.022

"\s1O\fRI="1"| O<="1";\fP" at 3.656,0.684
"\s10\fRI="0"|O<="0";\fP" at 2.812,8.897 rjust
"\s1O\fRI =" 0" | O<="1";\fP" at 4.444,8.897 rjust
"\s1O\fRI="1"| O<="0";\fP" at 2.925,6.028 |just
"\s1O\fR O<="0";\fP" at 3.263,7.153 |just
"\s10\fR O<="0";\fP" at 1.800,6.028 |just
"\s10\fR O<=" 0" ;\fP" at 1.406,5.240 |just
"\s1O\fR O<="1";\fP" at 5.344,0.234 |just

. PE

C. BRUSEY 20 Output

The BRUSEY 20 output with full debugging turned onisgivenin Figure 27,

and the VHDL output is given in Figure 28.

Figure 27. BRUSEY 20 Debug Output for Test Case

— BRUSEY20 — PIC to VHDL Parser — v2.1
— Copyright (C 1995 by Tom Mayo

— To contact the author: tcmayo@lsi nfo.psf.|nto.com
—_— Tom Mayo

— 67 W1l son St.
__ Pittsfield, MA 01201



This programis free software;

nmodi fy
it under
as

the terns of version 2 of the G\NU Genera

publ i shed by the Free Software Foundation

This programis distributed in the hope that
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or
G\U Cenera

Public License for

FI TNESS FOR A PARTI CULAR PURPCSE
nore details.

it wll

You shoul d have received a copy of the GNU Cenera
wite to the Free Software

along with this program

Foundat i on,

Parsing PIC file.
(2.
(2.

Tr ansi
Tr ansi

ti
ti

Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti
Transiti

State
State
State
State
State
State
State
State
State
State
State
State

at
at
at
at
at
at
at
at
at
at
at
at

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

I nc.,

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

(2.

. 343,
. 343,
. 343,
. 343,
. 343,
. 971,
. 971,
. 971,
. 971,
. 971,
. 971,
. 971,

881,
881,
881,
. 881,
. 400,
. 948,
. 400,
. 434,
. 434,
. 434,
. 801,
. 433,
. 433,
. 387,
. 842,
. 354,
. 659,
. 399,
. 929,
. 535,
. 133,
. 895,
. 218,
. 366,
. 707):
. 276):
. 844):
. 410) :
.979):
. 016):
. 448) :
. 880):
. 125):
. 557):
.313):
. 745):

ODUTOOWNRFPRONWOUO

ONNWWANORONDRDIPWE WAT WA

if not,

.992)
559):
127):

695) :
267):
620) :
961):
732):
165):
597):
024):
841):
029):
463) :
897):
794):
632):
215):
541):
932):
244) :

. 526):

230) :

.152)

rad
rad
rad
rad
rad
rad
r adi
r adi
r adi
r adi
radi
r adi

675 Mass Ave,

Canbri dge,

. 657, 6.529)
. 657, 5.095)
. 657, 3.664)
. 657, 2.232)
. 969, 3.861)
. 969, 2.455)
. 969, 0.992)
. 658, 1.195)
. 658, 2.628)
. 658, 4.060)
. 025, 5.487)
. 658, 8.304)
. 658, 5.491)
. 612, 6.925)
. 612, 9.600)
. 232, 2.287)
. 655, 0.832)
. 288, 9.488)
. 288, 8.025)
. 288, 6.730)
. 288, 5.268)
. 288, 3.805)
. 676, 6.698)
. 892, 0.668)
0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

0. 358.

>

>
>
—>
—>

—>
-
-
-
—>
—>
—>
-
-
—>

—>
—>
—>
-

-

Publ i ¢ Li cense

Publ i ¢ Li cense

. 657,
. 657,
. 657,
. 657,
. 969,
. 969,
. 025,
. 658,
. 658,
. 658,
. 025,
. 658,
. 658,
. 612,
. 306,
. 139,
. 658,
. 310,
. 319,
. 308,
. 288,
. 231,
. 474,
. 286,

MA 02139, USA

ONPFPPRPPPOORP~NO0OOODOOOUITWNOOOORLNM~O

you can redistribute it and/or

be useful,

See the

. 455) .
.022).
. 590) .
. 157).
. 673).
. 786) .
. 899).
. 269).
. 701).
.134).
.561).
. 379).
. 566) .
. 000).
. 069).
.334).
. 855) .
. 931).
. 042) .
. 125).
. 219).
. 275).
. 081).
. 848).



Transition at

String at (2.318, 5.266):
String at (2.318, 3.860):
String at (2.318, 2.442):
String at (2.306, 1.017):
String at (4.950, 2.468):
String at (4.939, 3.908):
String at (4.950, 5.337):
String at (4.961, 6.788):
String at (4.950, 8.087):
String at (4.950, 9.584):
String at (4.415, 1.761):
String at (4.405, 4.697):
String at (2.930, 4.481):
String at (4.382, 6.064):
String at (2.915, 3.036):
String at (4.404, 3.195):
String at (4.354, 7.481):
String at (2.312, 6.717):
String at (0.960, 4.556):
String at (0.409, 3.881):
String at (2.937, 1.574):
String at (5.876, 2.599):
String at (6.090, 3.195):
String at (6.506, 3.814):
String at (6.878, 4.444):
String at (7.350, 5.209):
String at (5.269, 1.789):
String at (1.804, 7.740):
String at (4.950, 1.022):
String at (3.656, 0.684):
String at (2.812, 8.897):
String at (4.444, 8.897):
String at (2.925, 6.028):
String at (3.263, 7.153):
String at (1.800, 6.028):
String at (1.406, 5.240):
String at (5.344, 0.234):
12 states, 25 transitions,
Filling data structures..
Nane for state at (2.343,
Nane for state at (2.343,
Nane for state at (2.343,
Nane for state at (2.343,
Nane for state at (2.343,
Nane for state at (4.971,
Nane for state at (4.971,
Nane for state at (4.971,
Nane for state at (4.971,
Nane for state at (4.971,
Nane for state at (4.971,
Nanme for state at (4.971,

(1.844, 7.840):

"s0b”.
"s0c”.
"s0d”.
"s0e”.
"slb”.
"slc”.
"sld”.
"sle”.
"sl1f”.
"slg”.
"1="0" | Ox=
"I="0" | Ox=
"=
"I=0 | O<=
"=l O
"1="0" | O<=
"1="0" | Ox=
"s0a”.
"|O<="0";".
"|O<="0"; ",
"I=1 | O
" O<="1
" O<="1
T|O<="1"
T|O<="1""
"O<="1""
" O<="1
"rst_n="0
"sla”.
1= O
"1=0 | O=
"1="0" | O<=
"I=1 | O
"|O<="0";"
"|O<="0";"
"|O<="0" ;"
"|O<="1""
37 string
6.707) is
5.276) is
3.844) is
2.410) is
0.979) is
1.016) is
2.448) is
3.880) is
8.125) is
9.557) is
5.313) is
6.745) is

(1.551, 8.645) —> (2.136, 7.036).

1.
1.

n -

"s0a”.
"s0b”.
"s0c”.
"s0d".
"s0e”.
"sla”.
"slb”.
"slc”.
"s1f”.
"slg”.
"s1d”.
"sle”.



Condition for transition at (2.881, 5.992) is "I=1| O=0
Starting new transition chain for state "s0a”.

Transition "1="1"| O<="0";"” fromstate "s0a”".

Transition "1="1"| O<="0";" fromstate "sOb".

Condition for transition at (2.881, 4.559) is "I="1| =0
Starting new transition chain for state "sOb”.

Transition "1="1"| O<="0";" fromstate "sOb".

Transition "1="1"|] O<="0";" fromstate "s0Oc”.

Condition for transition at (2.881, 3.127) is "I=1| =0
Starting new transition chain for state "sOc”.

Transition "1="1"|] O<="0";"” fromstate "s0Oc".

Transition "1="1"| O<="0";" fromstate "s0d".

Condition for transition at (2.881, 1.695) is "I=1| O=0
Starting new transition chain for state "s0d”.

Transition "1="1"| O<="0";"” fromstate "s0d".

Transition "1="1"| O<="0";"” fromstate "sOe".

Condition for transition at (1.400, 5.267) is "|O<="0";".
Transition "|O<="0";" fromstate "s0a”.
Adding link 1 to transition chain for state
Transition "|O<="0";” fromstate "s0c”.
Condition for transition at (0.948, 4.620) is "|O<="0";".
Transition "|O<="0";"” fromstate "s0Oa”.

Adding link 1 to transition chain for state "s0d”.
Transition "|O<="0";" fromstate "s0d”".

Condition for transition at (0.400, 3.961) is "|O<="0";".
Transition "|O<="0";" fromstate "s0Oa”.
Starting new transition chain for state
Transition "|O<="0";"” fromstate "sOe".
Condition for transition at (4.434, 1.732) is "I=0|0=1";
Starting new transition chain for state "sla”.

Transition "1="0"|O<="1";" fromstate "sla”".

Transition "1="0"|O<="1";" fromstate "slb”.

Condition for transition at (4.434, 3.165) is "I=0|0O<="1";
Starting new transition chain for state "slb”.

Transition "1="0"|O<="1";" fromstate "slb".

Transition "1="0"|O<="1";" fromstate "slc”.

Condition for transition at (4.434, 4.597) is "I=0|0O<="1";
Starting new transition chain for state "slc”.

Transition "1="0"|O<="1";" fromstate "slc".

Transition "1=0"|O<="1";" fromstate "sld".

Condition for transition at (1.801, 6.024) is "|O<="0";".
Transition "|O<="0";” fromstate "s0a”.

Adding link 1 to transition chain for state "sOb”.
Transition "|O<="0";"” fromstate "sOb".

Condition for transition at (4.433, 8.841) is "I=0|0O<="1";
Starting new transition chain for state "s1f”.

Transition "1="0"|O<="1";" fromstate "si1f”.

Transition "1="0"|O<="1";" fromstate "sl1g”".

Condition for transition at (4.433, 6.029) is "I=0|0O<="1";
Starting new transition chain for state "sl1d”.

Transition "1="0"|O<="1";" fromstate "sl1d".

Transition "1="0"|O<="1";" fromstate "sle”.

s0c”.

sOe”.
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Condition for transition at (4.387, 7.463) is "I=0|0O<=1";".
Transition "1="0"|O<="1";" fromstate "sif”.

Starting new transition chain for state "sle”.

Transition "1="0"|O<="1";" fromstate "sle".

Condition for transition at (2.842, 8.897) is "I=0|0O<=0";".
Transition "1="0"|O<="0";"” fromstate "s0a".

Starting new transition chain for state "sl1g”.

Transition "1="0"|O<="0";” fromstate "sl1g”".

Condition for transition at (5.354, 1.794) is "|O<="1";".
Transition "|O<="1";" fromstate "sla”.

Adding link 1 to transition chain for state "slb”.

Transition "|O<="1";" fromstate "slb".

Condition for transition at (3.659, 0.632) is "I=1| O=1";".
Adding link 1 to transition chain for state "s0Oe”.

Transition "1="1"|] O<="1";" fromstate "sOe".

Transition "I="1"| O<="1";" fromstate "sla".

Condition for transition at (7.399, 5.215) is "|O<="1";".
Transition "|O<="1";" fromstate "sla”.

Adding link 1 to transition chain for state ”"sl1g”.
Transition "|O<="1";” fromstate "slg”.

Condition for transition at (6.929, 4.541) is "|O<="1";".
Transition "|O<="1";" fromstate "sla”.

Adding link 1 to transition chain for state "sl1f”.
Transition "|O<="1";" fromstate "silf”.

Condition for transition at (6.535, 3.932) is "|O<="1";".
Transition "|O<="1";" fromstate "sla".
Adding link 1 to transition chain for state
Transition "|O<="1";" fromstate "sle".
Condition for transition at (6.133, 3.244) is "|O="1";".
Transition "|O<="1";” fromstate "sla”.

Adding link 1 to transition chain for state ”"sl1d”.
Transition "|O<="1";" fromstate "si1d".

Condition for transition at (5.895, 2.526) is "|O<="1";".
Transition "|O<="1";" fromstate "sla".
Adding link 1 to transition chain for state
Transition "|O<="1";” fromstate "slc”.
Condition for transition at (3.218, 7.230) is "|O<="0";".
Adding link 1 to transition chain for state "s0a”.
Transition "|O<="0";"” fromstate "s0a".

Transition "|O<="0";" fromstate "s0a”.

Condition for transition at (5.366, 0.152) is "|O<="1";".
Adding link 1 to transition chain for state "sla”.
Transition "|O<="1";" fromstate "sla".

Transition "|O<="1";" fromstate "sla”.

Condition for transition at (1.844, 7.840) is
"rst_n="0|0="0";".

Transition "rst_n="0"|0O<="0";" fromstate "s0a”.

Reset transition is "rst_n=0|0O=0";".

Fi ndi ng i nputs and outputs...

Parsing strings for state "s0a”.

Parsing string 1. ” trans: I=1| O="0";".

Passing 22 bytes to the | exer.

sle”.

slc”.
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| exer: ok, starting a transition string.
lexer: identifier "1”

| exer: =

lexer: literal

| exer: |

| exer: identifier "O

| exer: | ess—t han—or—equal or assignment operator

lexer: litera

| exer: ;

Passing O bytes to the | exer.

Parsing string 2: " trans: |O<="0";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.
| exer: |

|l exer: identifier "O

| exer: | ess—t han—or—equal or assignment operator

| exer: literal

| exer: ;

Passing O bytes to the |exer.
Parsing strings for state "s0Ob”.
Parsing string 3: ”
Passing 22 bytes to the |exer.

| exer: ok, starting a transition string.
| exer: identifier "1”

| exer: =

| exer: literal

| exer: |

| exer: identifier "O

| exer: | ess—than—or—equal or assignnment operator

lexer: litera

| exer: ;

Passing 0 bytes to the | exer.

Parsing string 4. ” trans: |O<="0";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.
| exer: |

| exer: identifier "CO

| exer: | ess—than—or—equal or assignment operator

lexer: litera

| exer: ;

Passing 0 bytes to the |exer.
Parsing strings for state "sOc”.
Parsing string 5: ”
Passing 22 bytes to the |exer.

| exer: ok, starting a transition string.
| exer: identifier "1”

| exer: =

lexer: literal

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignment operator

lexer: litera

trans: =1 O<="0";".

trans: =1 O<="0";".
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| exer: ;

Passing O bytes to the |exer.

Parsing string 6: ” trans: |O<="0";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignment operator
| exer: literal

| exer: ;

Passing 0 bytes to the | exer.

Parsing strings for state "s0d”.

Parsing string 7: ” trans: 1=1] O=0";".
Passing 22 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: identifier "I”

| exer: =

lexer: litera

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignment operator
| exer: literal

| exer: ;

Passing 0 bytes to the |exer.

Parsing string 8 ” trans: |O<="0";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "O

| exer: | ess—t han—or—equal or assignment operator
| exer: literal

| exer: ;

Passing O bytes to the | exer.

Parsing strings for state "s0Oe”.

Parsing string 9: ” trans: |O<="0";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "O

| exer: | ess—than—or—equal or assignment operator
lexer: litera

| exer: ;
Passing 0 bytes to the | exer.
Parsing string 10: " trans: 1=1] O=1";".

Passing 22 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: identifier "I”

| exer: =

| exer: literal

| exer: |

| exer: identifier "O

| exer: | ess—t han—or—equal or assignment operator
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| exer:
| exer:

literal

Passing O bytes to the | exer.
Parsing strings for state "sla”

Parsing string 11:

trans: 1="0|O<="1";".

Passing 21 bytes to the |exer.

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

ok, starting a transition string.
identifier "I”

literal

I

identifier "O

| ess—t han—or—equal or assi gnnent operator
literal

Passing 0 bytes to the | exer.

Parsing string 12:

trans: |O<="1";".

Passing 16 bytes to the |exer.

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

ok, starting a transition string.

|

identifier "O

| ess—t han—or—equal or assi gnnent operator
literal

Passing O bytes to the | exer.
Parsing strings for state "slb”.

Parsing string 13:

" trans: 1=0|O<="1";".

Passing 21 bytes to the |exer.

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

ok, starting a transition string.
identifier "I”

literal

I

identifier "O

| ess—t han—or—equal or assi gnnent operator
literal

Passing O bytes to the | exer.

Parsing string 14:

" trans: |O<="1";".

Passing 16 bytes to the |exer.

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

ok, starting a transition string.

|

identifier "O

| ess—t han—or—equal or assi gnnent operator
literal

Passing 0 bytes to the | exer.

Parsing strings for state "slc”.

Parsing string 15: ” trans: =0 |O="1";".
Passing 21 bytes to the |exer.

| exer:
| exer:

ok, starting a transition string.
identifier "I”
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| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

Passi
Par si
Passi

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

Passi
Par si
Par si
Passi

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

Passi
Par si
Passi

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

Passi
Par si
Par si
Passi

| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

Passi

iteral

identifier "O
literal

ng O bytes to the Iexer.

ng string 16: " trans: |O<="1";".
ng 16 bytes to the |exer.

ok, starting a transition string.

I
identifier "O

literal

ng O bytes to the | exer.

ng strings for state "sif”.

ng string 17: 7 trans: 1=0|0O<="1";".
ng 21 bytes to the | exer.

ok, starting a transition string.
identifier "I”

literal

|
identifier "O

literal

ng O bytes to the |exer.

ng string 18: ” trans: |O<="1";".
ng 16 bytes to the |exer.

ok, starting a transition string.

I
identifier "O

literal

ng O bytes to the | exer.

ng strings for state "slg”.

ng string 19: ” trans: 1=0|0=0";".
ng 21 bytes to the | exer.

ok, starting a transition string.
identifier "I”

literal

|
identifier "O
literal

ng O bytes to the | exer.

| ess—t han—or—equal or assi gnnent operator

| ess—t han—or —equal or assi gnnent operator

| ess—t han—or—equal or assi gnnent operator

| ess—t han—or—equal or assi gnnent operator

| ess—t han—or—equal or assi gnnent operator
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Parsing string 20: " trans: |O<="1";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignment operator
lexer: litera

| exer: ;

Passing O bytes to the | exer.

Parsing strings for state "sl1d”.

Parsing string 21: " trans: 1=0|O="1";".
Passing 21 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: identifier "I”

| exer: =

| exer: literal

| exer: |

| exer: identifier "O

| exer: | ess—t han—or—equal or assignment operator
| exer: literal

| exer: ;

Passing O bytes to the | exer.

Parsing string 22: " trans: |O<="1";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignnment operator
lexer: litera

| exer: ;

Passing O bytes to the Iexer.

Parsing strings for state "sle”.

Parsing string 23: ” trans: 1=0|0=1";".
Passing 21 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: identifier "I”

| exer: =

| exer: literal

| exer: |

| exer: identifier "O

| exer: | ess—than—or—equal or assignment operator
lexer: litera

| exer: ;

Passing O bytes to the | exer.

Parsing string 24: " trans: |O<="1";".
Passing 16 bytes to the |exer.

| exer: ok, starting a transition string.

| exer: |

| exer: identifier "CO

| exer: | ess—t han—or—equal or assignment operator
lexer: litera

| exer: ;
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Passing 0 bytes to the |exer.
Parsing string 25:

| exer:
| exer:
Addi ng
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:
| exer:

async:

"rst_n”

i nput signal rst_n.

literal

identifier
| ess—t han-or —equa

literal

” Oy

rst_ n=0 | O<="0";".
Passing 25 bytes to the |exer.

ok, starting a async transition string.
identifier

or assi gnnent oper ator

Passing 0 bytes to the | exer.
Generating VHDL..

defaul t
defaul t
defaul t
def aul t
def aul t
def aul t
defaul t
defaul t
defaul t
def aul t
def aul t
defaul t

transiti
transiti
transiti
transiti
transiti
transiti
transiti
transiti
transiti
transiti
transiti
transiti

on,
on,
on,
on,
on,
on,
on,
on,
on,
on,
on,
on,

deferri
deferri
deferri
deferri
deferri
deferri
deferri
deferri
deferri
deferri
deferri
deferri

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
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Figure 28. BRUSEY 20 VHDL Output for Test Case

— The following VHDL code was generated by
— BRUSEY20 — PIC to VHDL Parser — v2.1
— Copyright (C 1995 by Tom Mayo

— To contact the author: tcmayo@lsi nfo.psf.|nto.com
—_— Tom Mayo

—_— 67 Wlson St.

— Pittsfield, MA 01201

— This programis free software; you can redistribute it and/or

— nodi fy
— it under the terns of version 2 of the GNU General Public License
— as

— published by the Free Software Foundati on.

— This programis distributed in the hope that it will be useful,
— but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
—— MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

— GNU General Public License for nore details.

— You shoul d have received a copy of the GNU General Public License
— along with this program if not, wite to the Free Software

— Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

LI BRARY i eee;

USE ieee.std_|l ogic_1164. ALL;

ENTITY your _entity IS
PORT (
clk : IN std_logic;
I : IN std_logic;
rst_n: INstd_|ogic;
O: QUT std logic
)
END your _entity;

ARCHI TECTURE exenpl ar OF your _entity IS

TYPE state_type IS ( sOa, sOb, sOc, sO0d, sOe, sla, slb, slc, slif,
slg, sl1d, sle );

SIGNAL current_state, next_state : state_type;

SIGNAL next O : std_ | ogic;

BEG N

registers : PROCESS ( clk, rst_n)
BEG N
IF ( rst_n="0") THEN
<=0



current _state <= sOa
ELSIF ( clk’ EVENT AND clk = "1" ) THEN
O <= next _Q
current _state <= next_state;
END | F;
END PRCCESS;

transitions : PROCESS ( current_state, | )
BEA N
CASE current_state IS
WHEN sOa =>
IF ( 1=1 ) THEN
next _O<="0";
next _state <= sOb
ELSE
next _O<="0";
next _state <= sOa
END | F;
WHEN sOb =>
IF ( I=1 ) THEN
next _O<="0";
next _state <= sOc;
ELSE
next _O<="0";
next _state <= sOa
END | F;
WHEN sOc =>
IF ( 1=1 ) THEN
next _O<="0";
next _state <= s0d,
ELSE
next _O<="0";
next _state <= sOa
END | F;
WHEN s0d =>
IF ( I=1 ) THEN
next _O<="0";
next _state <= sOe;
ELSE
next _O<="0";
next _state <= sOa
END | F;
WHEN sOe =>
IF ( I=21 ) THEN
next _O<="1";
next _state <= sla;
ELSE
next O<='0’
next _state <= sOa
END | F;
WHEN sla =>
IF ( I=0 ) THEN



next _O<="1";

next _state <= slb
ELSE

next _O<="1";

next _state <= sla;
END | F;

WHEN sl1b =>

IF ( I=0 ) THEN

next O<="1’;

next _state <= slc;
ELSE

next _O<="1";

next _state <= sla;
END | F;

VWHEN slc =>

IF ( I=0 ) THEN

next _O<="1";

next state <= sld;
ELSE

next O<="1’;

next _state <= sla;
END | F;

WHEN s1f =>
IF ( 1=0 ) THEN
next _O<="1’;

next _state <= slg;
ELSE
next _O<="1";
next _state <= sla;
END | F;
WHEN slg =>
IF ( I=0 ) THEN
next _O<="0";
next _state <= sOa
ELSE
next O<="1’;
next _state <= sla;
END | F;
WHEN sl1d =>
IF ( 1=0 ) THEN
next _O<="1";
next _state <= sle;
ELSE
next _O<="1";
next _state <= sla;
END | F;
WHEN sle =>
IF ( I=0 ) THEN
next _O<="1";
next state <= sif;
ELSE
next _O<="1";
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next _state <= sla;
END | F;
END CASE;
END PROCESS;
END exenpl ar;

D. Exemplar Output

The Exemplar output isgivenin Figure 29, and the schematic representation

iIsgiven in Figure 30.
Figure29. Exemplar VHDL Output for Test Case

— Program

— gc¢ woj.vhd woj.rtl —input_formt=VHDL —t ar get =behav

— —out put _format=VHDL -are

— a —effort=Standard —macro —wire_tree=Wrst —report=slack_table
—— —report=cell _

—— usage -report=device_util —encodi ng=OneHot —-VHDL 93

—— —nodgen_l i brary=generic

—— —status_pi pe=8

— Version V3.0.2

— Definition of YOUR ENTITY

— VHDL Concurrent Statenents, created by
— Exenplar Logic’'s Galileo
— Tue Jul 25 10:53:00 1995

library | EEE ;

use | EEE. STD_LOG C _1164. all ;
library EXEMPLAR ;

use EXEMPLAR. EXEMPLAR 1164.all ;

entity YOUR_ENTITY is
port (
CLK : IN std_ logic ;
I : INstd_logic ;
RST_N : IN std_logic ;
O: QUT std logic) ;
end YOUR ENTITY ;

architecture EXEMPLAR of YOUR ENTITY is
si gnal
CURRENT_STATE 11, n8, CURRENT_STATE 10, CURRENT_STATE 9,
CURRENT_STATE_8, CURRENT_STATE_7, CURRENT_STATE_S6,



CURRENT_STATE_5,
CURRENT_STATE_4,

CURRENT_STATE_1,
CURRENT_STATE_0,

n596, n597,
n598, n599, n600,
n750, n751
std_logic ;

begi n

O <= nl26

n8 <= (not RST_N) ;

NEXT_O <= (

NEXT_STATE 5 <= (I
(I and

n745) ;

NEXT_STATE 0 <= (not
or (not |
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CURRENT _STATE_3, CURRENT_STATE_2,

n126, NEXT_O, NEXT_STATE 5, NEXT_STATE_O,

n601,

| and n745) or

n602,

and n745) or (n751) or
and n751) or (I

and CURRENT_STATE 1) or (not |

and
CURRENT_STATE_3) ;
n596 <= (|

and CURRENT STATE 0)

n603,

n604,

(not |

n605, n745, n749,

(n750) or (n749) ;
and n750) or (I

and n749) or

and CURRENT_STATE_0)

and CURRENT_STATE 2) or (not |

n597 <= (I and CURRENT_STATE 1) ;
n598 <= (I and CURRENT_STATE 2) ;
n599 <= (I and CURRENT_STATE 3) ;
n600 <= (not | and CURRENT_STATE_5)
n601 <= (not | and CURRENT_STATE_6)
n602 <= (not | and CURRENT_STATE 11)
n603 <= (not | and CURRENT_STATE_8)
n604 <= (not | and CURRENT_STATE 7)
n605 <= (not | and CURRENT_STATE_10)
n745 <= ( CURRENT_STATE 4) or

n749 <= ( CURRENT_STATE 10) or

n750 <= (CURRENT_STATE_7) or

n751 <= (CURRENT_STATE_5) or

CURRENT_STATE_11)

DFFPCE (dat a=>n604, preset =>'0’

CURRENT_STATE_10)

DFFPCE (dat a=>n603, preset=>'0’

CURRENT_STATE_9)

DFFPCE (dat a=>n602, preset =>' 0’

CURRENT_STATE_8)

DFFPCE (dat a=>n601, preset =>' 0’

CURRENT_STATE_7)

DFFPCE (dat a=>n600, preset=>'0’

CURRENT_STATE_6)
DFFPCE

(dat a=>NEXT_STATE 5, preset=>' 0, cl ear =>n8, enabl e=>" 1’

CURRENT_STATE_5)

DFFPCE (dat a=>n599, preset=>'0', cl ear=>n8, enabl e=>

CURRENT_STATE_4)

cl ear =>n8, enabl e=>" 1"
cl ear =>n8, enabl e=>" 1’
cl ear=>n8, enabl e=>" 1’
cl ear =>n8, enabl e=>" 1’

cl ear =>n8, enabl e=>" 1’

( CURRENT_STATE 9) ;
(CURRENT_STATE 11) ;

( CURRENT_STATE 8) ;

( CURRENT_STATE _6) ;
DFFPCE (dat a=>n605, preset =>' 0’ , cl ear=>n8, enabl e=>" 1’

cl k=>CLK, q=>
cl k=>CLK, q=>
cl k=>CLK, q=>
cl k=>CLK, q=>
cl k=>CLK, q=>

cl k=>CLK, q=>

, ¢l k=>CLK, q=>

1", cl k=>CLK, g=>
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DFFPCE (dat a=>n598, preset=>' 0’ , cl ear=>n8, enabl e=>’ 1’ , cl k=>CLK, q=>
CURRENT_STATE _3) ;
DFFPCE (dat a=>n597, preset =>" 0’ , cl ear=>n8, enabl e=>" 1’ | cl k=>CLK, q=>
CURRENT_STATE 2) ;
DFFPCE (dat a=>n596, preset =>' 0’ , cl ear=>n8, enabl e=>" 1’ , cl k=>CLK, q=>
CURRENT_STATE 1) ;
DFFPCE
(dat a=>NEXT_STATE_O, preset =>n8, cl ear=>" 0", enabl e=>" 1", cl k=>CLK, q=>
CURRENT_STATE_0) ;
DFFPCE
(dat a=>NEXT_Q, preset =>'0', cl ear=>n8, enabl e=>"' 1", ¢l k=>CLK, q=>n126
)

end EXEMPLAR ;

Figure 30. Exemplar Schematic Output for Test Case
See the following three pages.
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PART 6

DISCUSSION AND CONCLUSIONS

A. Use of the Algorithm

Using the BRUSEY 20 program presented in this paper stands to make the
FSM design and documentation process easier. The designer need only draw the state dia-
gram once. The diagram can then be converted using BRUSEY 20 into behaviora VHDL
and used inthe actual design. The diagram can also beincluded without modification in de-

sign documentation.
B. Limitations

The BRUSEY 20 program, as implemented at this time, has several limita-
tionswhichrestrict itsusefulness. Theselimitationsarelistedintheorder they appear inthe

program as written.

e The geometric associations in parsing the PIC input are not ideal. For exam-
ple, the state name must be in the center of the state circle, and transition ex-
pressions must be within afixed distance from the midpoint of the transition.

e Thereisno way to specify prioritization of transitions. Thiswould reduce ex-
pression complexity.

e Signalsin expressions and assignments may only be logic type, i.e. no vec-
tors, integers, enumerated types, etc.

e Output FSMs of registered—output Moore and combinational—output Mealy
types are not supported.

e Theoutput stylesfor PICA's VCOMP and VSIM and for Alliance have not
been implemented yet.

In order to improve the deficiencies above, the steps below could be taken.

e Tolerances used for association of strings with states and transitions and of
transitions with states could be dynamically based on the dimensions of the
objects in question.

e String syntax or line style ordering could be used to denote transition prioriti-
zation.
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e TheVHDL parser and the 1/0 data structure could be enhanced to account for
different types (i.e. vectors, integers, enumerated types) of inputs and outputs.

e The VHDL—generating traverser could be enhanced to support class A and C
FSMs. Registered—output Moore FSM's could be supported by adding an in-
ternal combinational signal and clocking outputs in the registered process.
Combinational—output Mealy FSM's could be supported by eliminating the
steps in the algorithm which add the internal signal.

e Additional downstream synthesis and simulation tool VHDL output styles
could be supported by modifying the traverser and adding arun time parame-
ter which indicates what style is desired.

C. Future Directions

The user interface to the BRUSEY 20 program is somewhat cumbersomein
termsof input and output filenamesaswell asruntimeoptions. Better handlinginthisregard
could be achieved with agraphical push—button typeinterface. Theuser couldfill inaform
withthedesired input and output namesand activate check boxesto select options. Thename

of the entity and architecture could also be specified.

There are many State Machine capture tools such as BRUSEY 20 available
commercialy. The capabilities of these commercial tools are more compl ete than those of
the BRUSEY 20 program, mainly with respect to integration with the actual drawing pro-

gram. It would be beneficial to improve the BRUSEY 20 tool in this regard.
The stepsin the FSM capture process with BRUSEY 20 are currently

e Draw the FSM using XFIG,
e Run BRUSEY 20,

e Runagate-evel synthesisor simulation tool (Exemplar, PICA, Alliance, or
another tooal), and

e Runasilicon floorplanner to generate fuse files or an ASIC map.

Integration of these stepsinto one user interface would make this process easier to follow.
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APPENDIX

BRUSEY20 MANUAL PAGE

BRUSEY20( 1) USER COMVANDS BRUSEY20( 1)
NAME
brusey20, zzz - Convert TROFF PIC state diagrams into
behavi oral VHDL
SYNCPSI S
brusey20 desi gn
zzz [ -h ] [ -dO... 1 [ -sO... 1 [ —-ve]
DESCRI PTI ON

zzz parses a state diagramin TROFF PIC format and creates
behavioral VHDL suitable for sinulation and synthesis by
downstreamtools. PICinput is read from standard input,
VHDL output is witten to standard output, and error and any
debug output is witten to standard error.

brusey20 runs zzz wth full debugging turned on and
design.pic as standard input, design.vhd as standard out put,
and design.out as standard error.

OPTI ONS
—h Print help information and quit.

—dO Turn on the debugging specified by O (See bel ow.)
—da Turn all debugging on.

—dp Turn PIC parse debuggi ng on.

—df Turn data structure fill debugging on.

—de Turn expression parse debuggi ng on.

—di  Turn I/O find debuggi ng on.

—dv Turn VHDL code generation debuggi ng on.

—sO Turn on synchroni zing specified by O (See bel ow.)
—sr Reset synchronously. Not yet inplenented.

—so If an output is More, nake it registered. [f Mealy,
make it conbinational. Not yet inplenented.
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—ve GCenerate Explicit default state transitions. Not yet
i mpl enent ed.

SEE ALSO
Thomas O ayton Mayo, Converting State D agrans into Syn-
t hesi zabl e VHDL, August, 1995.

BUGS
The geonetric associations in parsing the PIC input are not
ideal. For exanple, the state nane nust be in the center of
the state circle, and transition expressions nust be wthin
a fixed distance fromthe mdpoint of the transition.
There is no way to specify wprioritization of transitions.
This woul d reduce expression conplexity.
Signals in expressions and assignnments nmay only be logic
type, i.e. no vectors, integers, enunerated types, etc.
Qut put FSMs of registered-output More and conbinational -
out put Mealy types are not yet supported.
The out put styles for PICA's VCOW and VSIM and for Alliance
have not been inpl enmented yet.

DI AGNGCSTI CS
Many.

WARNI NG

brusey20 overwites design.vhd and design.out w thout con-
firmation.



