
For: tcmayo
Printed on: Wed, Nov 22, 1995 10:38:20
From book: Thesis
Document: Cover
Last saved on: Fri, Jul 28, 1995 10:45:15
Document: TOC.new
Last saved on: Mon, Jul 31, 1995 16:53:55
Document: TOC_tbl.new
Last saved on: Mon, Jul 31, 1995 16:39:24
Document: TOC_fig.new
Last saved on: Mon, Jul 31, 1995 16:41:26
Document: Abstract
Last saved on: Mon, Jul 31, 1995 17:17:58
Document: Intro
Last saved on: Mon, Jul 31, 1995 16:43:32
Document: PL_Design
Last saved on: Mon, Jul 31, 1995 16:44:36
Document: VHDL_FSM
Last saved on: Fri, Jul 28, 1995 08:48:07
Document: Mech
Last saved on: Mon, Jul 31, 1995 16:46:16
Document: Results
Last saved on: Mon, Jul 31, 1995 16:53:26
Document: Conc
Last saved on: Mon, Jul 31, 1995 16:54:34
(...)

CONVERTING STATE DIAGRAMS INTO SYNTHESIZEABLE VHDL

by

Thomas Clayton Mayo

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING

Approved:

Dr. Kenneth Rose
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

August 1995

ii

CONTENTS
Page

List Of Tables iii. List Of Figures iv. Abstract vi.
�� ��#(&$�)�($#��#��� '($& ��!���
�� ��&$�&�""��!���$� ���' �#���A. Entry Methods 3. B. High–Level Design Languages3. C. Synthesis 5.
�� �����* $&�!������ # (���(�(������ #���'�& %($#�����������������������A. Definitions 6. B. The Finite State Machine Design P8. C. State Encoding 9. D. Asynchronous Reset9. E. State Diagrams 10. F. Implementation of Finite State Machines with VHDL13.
�� ����������# �'�$���$#*�&' $#��A. PIC Graphics Description Input F32. B. Internal Finite State Machine Data Base Structures33. C. The Conversion Process35.
�� ���')!(' �
��A. Description 39. B. PIC File Representation41. C. BRUSEY20 Output 42. D. Exemplar Output 56.
�� � '�)'' $#��#���$#�!)' $#'��A. Use of the Algorithm62. B. Limitations 62. C. Future Directions 63.
	� �� (�&�()&��� (��APPENDIX BRUSEY20 Manual Page65.

iii

LIST OF TABLES
PageTable I. Finite State Machine Classes6. Table II. State Structure33. Table III. Transition Structure34. Table IV. String Structure34. Table V. Input and Output Signal Structure34.

iv

LIST OF FIGURES
PageFigure 1. Finite State Machine Classifications7. Figure 2. Moore Bounce Suppression Example10. Figure 3. Mealy Bounce Suppression Example11. Figure 4. Bounce Suppression FSM Class Functionality11. Figure 5. Conditional Expression / Output Assignment12. Figure 6. Finite State Machine Entity14. Figure 7. Enumerated T14. Figure 8. Explicit State Architecture15. Figure 9. Sequential Process16. Figure 10. Unintentional Combinational Loop16. Figure 11. Exemplar Class A (combinational–output Mealy) FSM18. Figure 12. PICA Class A (combinational–output Mealy) FSM19. Figure 13. Alliance Class A (combinational–output Mealy) FSM20. Figure 14. Exemplar Class B (combinational–output Moore) FSM22. . . . Figure 15. PICA Class B (combinational–output Moore) FSM23. Figure 16. Alliance Class B (combinational–output Moore) FSM24. Figure 17. Exemplar Class C (registered–output Moore) FSM26. Figure 18. PICA Class C (registered–output Moore) FSM27. Figure 19. Exemplar Class A1 (registered–output Mealy) FSM29. Figure 20. PICA Class A1 (registered–output Mealy) FSM30. Figure 21. Circle32. Figure 22. Arc32. Figure 23. Line32. Figure 24. Text String33. Figure 25. State Diagram for T40. Figure 26. PIC file for T41. Figure 27. BRUSEY20 Debug Output for T42. Figure 28. BRUSEY20 VHDL Output for T53. Figure 29. Exemplar VHDL Output for T56.

v

LIST OF FIGURES (CONTINUED)
PageFigure 30. Exemplar Schematic Output for T58.

vi

ABSTRACT

Capturing Finite State Machines (FSMs) with Very High Speed Integrated

Circuit (VHSIC) Hardware Description Language (VHDL) is explored. An overview of

programmable logic design methods and languages is given. Types of FSMs are described.

Methods of representing FSMs in behavioral VHDL are described, including specific re-

quirements of the Exemplar GALILEO, the PICA VCOMP and VSIM, and the ALLIANCE

tools. Pitfalls and ways to avoid them are discussed. A set of guidelines for describing FSMs

with state diagrams is presented. Useful behavioral VHDL output formats are presented in-

cluding styles used by the set of VHDL tools examined. A subset of the TROFF PIC file

format for recording graphics is described. A set of data structures for storing FSM design

data bases is described and a method of parsing graphical information into them is presented.

As part of this thesis, a new computer program, BRUSEY20, is designed and implemented

to convert PIC state machine drawings into behavioral VHDL. The BRUSEY20 tool is pres-

ented with an example design run.

1

PART 1

INTRODUCTION AND HISTORICAL REVIEW

The field of digital hardware design has advanced substantially in the past

two decades. The primary design vehicles in the 1970s were discrete logic, small– and me-

dium–scale integration, and simple programmable array logic (PAL) devices. Today, com-

plex programmable logic designs with equivalent gate counts in the tens of thousands are

commonplace. Design capture using boolean equations or a few schematic sheets was suffi-

cient for the complexity of many programmable logic designs in the 1970s and 1980s, but

today sophisticated design capture tools are not only more convenient, but are becoming es-

sential. Designers require object–oriented tools capable of multiple levels of detail hiding

and simplification. High–level design languages (HDLs) similar to those used for computer

software are gaining ground as the tools of choice.

One of the key languages which satisfies today’s programmable logic design

needs is Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL). This language provides a method for both low–level and hierarchical capture in

structural and behavioral modes. Originally VHDL was mainly useful for simulation, but

today VHDL is increasingly supported by synthesis vendors. These vendors offer tools

which can compile a behavioral design into a structural representation and synthesize PLD

and FPGA programming files or ASIC floorplans. This paper describes the motivation for

the creation of VHDL, and the application of VHDL to programmable logic design, especial-

ly the design of Finite State Machines (FSMs). Many hardware designers are not familiar

with or prefer not to enter into the software designer mind set required to capture behavioral

design descriptions directly with VHDL. The capture of FSMs can be particularly trouble-

2

some. Although the templates for this process are relatively straight–forward given a target

tool, the mechanics of translating an idea into VHDL statements can become as troublesome

as compiling an FSM into gates by hand.

The purpose of this effort is to devise a method to allow graphical capture of

FSMs using the familiar state diagram and provide VHDL output suitable for use with spe-

cific simulation and synthesis tools. Graphical capture is performed using a tool such as

XFIG, a free drawing program developed by Supoj Sutanthavibul, et al, which can export

a subset of the TROFF PIC format1. This format was chosen because it is simple to under-

stand and parse, it can be edited with a free tool, and it can be converted easily for inclusion

in design documentation.

The VHDL tools considered in this paper are

� Exemplar’s GALILEO synthesis tool,

� the Universite Pierre et Marie Curie ALLIANCE suite, and

� the University of Pittsburgh Integrated Circuit Analysis (PICA) Lab’s
VCOMP / VSIM simulator.

These tools were chosen because they are resentative of tools currently in use in industry and

academia.

3

PART 2

PROGRAMMABLE LOGIC DESIGN

A. Entry Methods

The classic way to design logic is with schematics. In the past, digital designs

were simple enough to be expressed using a single level of hierarchy with discrete compo-

nent symbols connected by signal runs, possibly across a small number of sheets. Schemat-

ics can be used in a hierarchical way with custom symbol block diagrams and multiple levels

of decomposition. Functional blocks may be populated with text–documented designs such

as PAL Assembly (PALASM) language files. These files may be as simple as to contain only

logic equations, or may contain FSM descriptions and truth tables. A relatively new mode

of design which can fill in the functional block is graphical entry. This is different from sche-

matic entry in that design behavior is captured instead of structure. This type of entry can

take the form of state diagrams, waveform timing diagrams, flow charts, data flow diagrams,

and so on.

B. High–Level Design Languages

It is debated that the use of a text HDL is the wave of the future. By the late

1980s and early 1990s, ”less than five percent of all hardware engineers used any HDL at

all2”. The largest number of engineers use schematics for design capture. Many have not

yet begun to employ the hierarchical design style described above. Despite these attitudes,

the complexity of designs has driven increased use of HDLs to cleanly partition design re-

sponsibilities and avoid errors. Following are presented a few representative logic design

languages and their capabilities.

4

PALASM. This language was pioneered originally in the late 1970s by

Monolithic Memories (MMI), a PLD vendor, for use in capturing PAL equations for their

devices. The basic concept of designing with PALASM is to record combinational and se-

quential equations for the PAL. Few provisions are made for behavioral capture. The de-

signer is responsible for ”compiling” FSMs, decoders, and functions into equations in a pro-

cess analogous to early software programming using assembly language. Design block

hierarchy is not supported. PALASM2 saw the introduction of rudimentary functional simu-

lation capability. Although this language was introduced to handle a specific vendor’s fami-

ly of PLDs, PALASM is now used as an intermediate format for structural description of dig-

ital circuits because of its simplicity and stability.

ABEL. ABEL is a language introduced in the 1980s by Data I/O, a PLD pro-

gramming vendor. This language offers an increased emphasis on behavioral specification

and is mostly vendor and device independent. Popular digital design elements such as FSMs

and truth tables are supported in relatively rigid formats. If a design’s behavior does not ini-

tially fit into one of the supported categories it must be forced to. Functional simulation is

supported for both combinational and sequential logic for design verification. Synthesis is

supported for multiple target devices and technologies.

VHDL. In the late 1970s and early 1980s, the U. S. Department of Defense

funded the Very High Speed Integrated Circuit (VHSIC) program to push digital design

technologies. In 1981, the VHSIC Hardware Description Language (VHDL) was proposed

to allow the VHSIC program members and vendors communicate designs in a common for-

mat. The Department of Defense issued Requirement 64 of MIL–STD–454 requiring the

use of VHDL in military projects. Since its beginnings, VHDL has grown to be very com-

5

plex, and incorporates features from software programming languages such as Ada and other

programmable logic design languages. It has progressed from IEEE STD 1076–1987 and

–1993. There are also offshoot standards for synthesis, libraries, and analog extensions to

VHDL. It allows description in free form structural and behavioral modes, making it flexible

enough to carry the design process from concept to implementation. Because VHDL is an

IEEE standard, many vendors support it for capture, simulation, and synthesis. With its flex-

ibility comes some unpredictability in results from one vendor to the next, but as the under-

standing of VHDL and its simulation and synthesis standards increases, this language will

mature into an all–purpose design tool.

Certainly there are many more proprietary and generic digital design lan-

guages than those listed here. The purpose of this section is merely to introduce a flavor for

what levels of HDL capabilities exist and how they can be used.

C. Synthesis

Once a design is captured using either a combination of the methods above

or other methods, the programmable logic must be synthesized. Two stages of synthesis can

be identified: (a) the conversion of a behavioral design description into gates, flip–flops, or

other macro cells, or (b) the optimized combination of these macro cells and the required sig-

nal routing into a specific floorplan within a particular silicon architecture. In a simple PAL

or Programmable Logic Device (PLD), these steps may be so integrally linked as to merge.

For a more complex Field Programmable Gate Array (FPGA) or Application Specific Inte-

grated Circuit (ASIC), the work needed in each step and the types of tasks required may merit

a completely separate notion of the two stages, or even the use of more than two stages.

6

PART 3

BEHAVIORAL VHDL FINITE STATE MACHINE DESCRIPTION

A. Definitions

A Finite State Machine is an agglomeration of combinational logic and

memory cells clocked through multiple states based on input conditions. The state of the

machine is maintained by memory elements, and each output of the machine may be a func-

tion of the inputs and the machine state. Typically, FSMs are said to fall into two categories,

Moore and Mealy. A Moore FSM is one for which all outputs depend only on the current

state. A Mealy FSM is one for which outputs depend on the state and the inputs. These defi-

nitions can be somewhat open to interpretation. Fletcher3 further qualifies FSM types with

letter designations. Mealy and Moore FSMs are Class A and B respectively. A Fletcher

Class C FSM is a Moore FSM with its outputs taken directly from the outputs of the memory

elements. An additional classification, a Mealy FSM with registered outputs, may be de-

noted as class A1. A summary of these classes is given in Table I. Illustrations of Fletcher

FSM classes A, B, and C and the additional class A1 are given in Figure 1. FSMs may also

be a mix of classes. Specifically, some outputs may be registered, and others may be com-

binational. In addition, some outputs may depend directly on the inputs while others are pure

functions of the state. In such cases, the outputs can be classified with letter designations

in keeping with the convention presented.

Table I. Finite State Machine Classes

Class A Combinational–Output Mealy FSM

Class B Combinational–Output Moore FSM

Class C Registered–Output Moore FSM

Class A1 Registered–Output Mealy FSM

7

Figure 1. Finite State Machine Classifications

Combinational
Next State
Decoder

State
Registers

Combinational
Output

Decoder
Inputs Outputs

Class A (combinational output Mealy) FSM

Combinational
Next State
Decoder

State
Registers

Combinational
Output

Decoder
Inputs Outputs

Class B (combinational output Moore) FSM

Combinational
Next State
Decoder

State
RegistersInputs Outputs

Class C (registered output Moore) FSM

Combinational
Next State
Decoder

State
RegistersInputs

Outputs

Class A1 (registered output Mealy) FSM

Combinational
Next State
Decoder

State
Registers

8

FSMs are useful in implementing complex sequences of events. These se-

quences may be of a playback type, where the FSM is triggered by a small number of inputs

to provide a complex set of output waveforms, or of an action–reaction type, where there are

few inputs and outputs, but the FSM will traverse many states. Another dimension to FSM

types is the proportion of required fast responses to required slow responses, in other words

the FSM may have to wait for long periods between intervals of fast activity.

B. The Finite State Machine Design Process

The typical starting place for a FSM design is to define the interfaces, which

signals are inputs and which are outputs. Next, the required relationships between the signals

are considered, not only the order of events, but the response times. A quick turn–around

time between input changes and output responses will drive a higher FSM clock frequency

or will drive the FSM to be of Mealy type. There may be long delays for other outputs which

justify a counter to awaken the FSM. Next, the steps required to perform the task at hand

must be identified: What happens first? What responses are required at what times? Are

there priorities which should divert the FSM from its current action? Next, it is useful to draw

a timing diagram, showing inputs, the state of the FSM, and its outputs with time. Once a

satisfactory notion of FSM sequencing is obtained, a state diagram can be drawn. With this

step completed, the designer must synthesize the combinational and sequential logic to per-

form the task. One way is to record the diagram using a language like VHDL and feed this

format into an automated design process. Another way is to draw the state diagram using

a drawing tool and have the balance of the process performed automatically.

9

C. State Encoding

Another concern in FSM design is the encoding of the state with the memory

elements used. Several encoding methods are in use, each with benefits and drawbacks.

Binary encoding uses the fewest registers for a given number of states and is most beneficial

for PAL and PLD designs where registers are at a premium. Each state is numbered and rep-

resented by the binary equivalent. For example, ”000”, ”001”, ”010”, ”011”, ”100”, and so

on. In addition to being conservative with registers, this scheme may be easier to interpret

during debugging. Gray–code is used to minimize glitching of combinational functions of

the state bits, which can be particularly helpful in class B FSMs. Only one bit toggles for

each change in state, for example ”000”, ”001”, ”011”, ”111”, ”110”, ”100”, etc. The draw-

back with this scheme is that it can be wasteful of bits, especially in FSMs where there is a

web of possible transitions between states. One–hot encoding is a scheme which minimizes

additional logic required to decode the next state and is most useful in FPGAs where registers

are plentiful. Only one register is active at a time, so each possible transition needs only con-

sider one state bit instead of all of the bits. An example of one–hot encoding is ”001”, ”010”,

”100”, etc.

D. Asynchronous Reset

It is very important to provide a reset signal to the synchronous processes in

a VHDL FSM design. Although simulators and some technologies may be consistent in how

registers power up, it is usually not guaranteed in hardware. It is possible to avoid using a

reset if unused states transition back to known states and initial glitches are tolerable at start

up.

10

E. State Diagrams

The method described here for drawing state diagrams is similar to the meth-

ods presented by Fletcher4, Blakeslee5, and Mano6. Moore and Mealy implementations of

a bounce suppression design are shown shown in Figures 2 and 3. These FSMs can be imple-

mented with registered or combinational outputs resulting in the four possible FSM classes.

The differences in functionality are illustrated in Figure 4. In practice, glitching occurs on

the output for non–registered Class A and B implementations. States are represented by

circles of arbitrary size with the name of the state denoted by the text string closest to the

center of the circle.

s0

s0x s1

s1x

dout<=’0’; dout<=’1’;

dout<=’1’;dout<=’0’;

rstn = ’0’

ena = ’1’ AND din = ’0’

ena = ’1’ AND din = ’1’

ena = ’1’ AND din = ’0’

ena = ’1’ AND din = ’1’

din = ’1’din = ’0’

Figure 2. Moore Bounce Suppression Example

11

ena = ’1’ AND din = ’0’|dout <= ’0’;

rstn = ’0’ | dout <= ’0’;

ena = ’1’ AND din = ’1’ | dout <= ’0’;

ena = ’1’ AND din = ’1’ | dout <= ’1’;

ena = ’1’ AND din = ’0’ | dout <= ’1’;

s0

s0x s1

s1x

|dout<=’0’;

|dout<=’1’;|dout<=’0’;

|dout<=’1’;

din = ’0’ | dout <= ’0’; din = ’1’|dout <= ’1’;

Figure 3. Mealy Bounce Suppression Example

Figure 4. Bounce Suppression FSM Class Functionality

Transitions between states are represented by lines or arcs with arrowheads

at the destination state. The asynchronous reset is denoted by a transition with no source state

and a reset signal in its conditional expression. All other transitions are synchronous with

respect to an implicit clock. Conditional expressions based on the FSM’s inputs cause transi-

12

tions. A conditional expression is specified as a text string at the midpoint of the transition’s

line or arc. Conditional expressions must be specified such that only one may be true for

transitions leaving a given state. One exit transition without a condition is allowed per state,

denoting the default transition. If no default is given, it is assumed that the FSM remains in

the current state if no transitions are valid.

Both Moore FSM classes and registered–output Mealy class FSMs are sup-

ported by the state diagram methodology presented here. Output assignments may be made

in states or with transitions. For a given output, if assignments are made only in states, the

output will be a function of the state, denoting a Moore FSM. From the diagram, it is not

discernable whether or not output assignments in states are registered. This must be speci-

fied externally. If at least one assignment for an output is made with a transition, the FSM

is implied to be Mealy. Outputs which change with transitions are specified in the same text

string as the associated input condition, separated by a vertical bar (pipe). In the case of a

state’s default transition, an output assignment may still be specified following an initial ver-

tical bar. For the purposes of the BRUSEY20 computer program presented in this paper, both

conditional expressions and output assignments must use valid VHDL syntax as in Figure

5.

Figure 5. Conditional Expression / Output Assignment

din = ’0’ AND ena = ’1’ | dout <= ’0’;

State encoding is implicit and left to the downstream synthesis tool. Therefore, a binary

coded value is not needed with a state.

13

F. Implementation of Finite State Machines with VHDL

Most tools which accept behavioral VHDL input are similar in their expecta-

tions of how an FSM is described. Exemplar Logic is a company which specializes in com-

pilation of behavioral inputs to target specific PLD, FPGA, and ASIC technologies. The

VHDL coding style expected by Exemplar7 is used as a baseline for discussion of style dif-

ferences.

The format expected by The University of Pittsburgh PICA Suite8 is slightly

different. Notably:

� States must be declared as bit_vectors.

� Logic variables and signals are of type bit instead of std_logic.

� Labels must be declared.

� Instead of ’EVENT, ’RISING or ’FALLING must be used for clock edges.

The most encumbering of these differences is the requirement of bit_vector state decla-

ration. Fortunately, the context where this stands to do the most harm is gate–level synthesis,

which is not part of the PICA process.

The Alliance toolset has been developed and is supported by the CAO–VLSI

team at Laboratoire MASI, Universite Pierre et Marie Curie (PARIS VI) in Paris, France.

One of the tools available with Alliance is SYF9, a FSM behavioral to structural synthesizer.

It operates on a very specialized subset of VHDL which they have logically dubbed FSM10.

Notable nuances of this VHDL subset are:

� Logic variables and signals are of type bit instead of std_logic.

� SYF is assisted via pragmas in identifying the clock and state variables.

� Reset is synchronous.

� Instead of ’EVENT, ’STABLE is used.

14

Unfortunately, Alliance does not directly support registered FSM outputs. The outputs can

be encoded into the state definition, but this is done through an external coding file.

VHDL Design Units

The starting place for capturing an FSM with VHDL is the Entity which con-

tains the functionality of the FSM. This design unit will declare the inputs and outputs to

the FSM. Care must be taken to use the appropriate signal types expected by the downstream

synthesis tool. Specifically, Exemplar works best with the IEEE standard 1164 std_log-

ic and std_logic_vector types, while PICA and Alliance expect bit and

bit_vector types. Figure 6 shows an entity suitable for use with the examples in Figures

2 and 3.

Figure 6. Finite State Machine Entity

ENTITY lpf IS
 PORT (clk : IN std_logic;
 ena : IN std_logic;
 rstn : IN std_logic;
 din : IN std_logic;
 dout : OUT std_logic
);
END lpf;

The VHDL Architecture is the implementation of the entity’s ”black box.”

It contains internal signals, variables, and most importantly, processes. Most synthesis tools,

including Exemplar and Alliance, allow the use of enumerated types for state declaration.

In this case, the architecture is setup in VHDL as a type as in Figure 7.

Figure 7. Enumerated Type State Architecture

ARCHITECTURE exemplar OF lpf IS
 TYPE state_type IS (s0, s0x, s1, s1x);
 SIGNAL current_state, next_state : state_type;
 –– other signals omitted
BEGIN
 –– FSM body omitted
END exemplar;

15

To coerce the synthesis tool to use a desired state encoding scheme, the designer can usually

explicitly declare the state register output values as in Figure 8.

Figure 8. Explicit State Architecture

ARCHITECTURE explicit OF lpf IS
 SIGNAL current_state, next_state :
 std_logic_vector (1 DOWNTO 0);
 CONSTANT s0 : std_logic_vector (1 DOWNTO 0) := ”00”;
 CONSTANT s0x : std_logic_vector (1 DOWNTO 0) := ”01”;
 CONSTANT s1 : std_logic_vector (1 DOWNTO 0) := ”10”;
 CONSTANT s1x : std_logic_vector (1 DOWNTO 0) := ”11”;
 –– other signals omitted
BEGIN
 –– FSM body omitted
END explicit;

With PICA, it is easiest to make the state register type bitvec and use literal constants in

the FSM body because neither type definition nor constants are supported.

The Process is the VHDL design unit which allows sequentially executing

instructions. An architecture without a process is reduced to a structural description. To en-

able downstream synthesis tools to optimize the implementation, an FSM is best captured

as a single entity with processes comprising the internal functionality. The key to behavioral

VHDL FSMs is the sensitivity lists of processes. To a VHDL simulator, a change on a signal

in a processes sensitivity list triggers the functionality of the process. For synthesis, the way

signals in the sensitivity list are used implies combinational and sequential logic. A process

with a clock in its sensitivity list and internal dependence on the edges of this clock will syn-

thesize as sequential logic. Figure 9 illustrates this principle.

16

Figure 9. Sequential Process

ARCHITECTURE exemplar OF lpf IS
–– declarations omitted
BEGIN
 registered : PROCESS (rstn, clk)
 BEGIN
 IF (rstn = ’0’) THEN
 current_state <= s0;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 current_state <= next_state;
 END IF;
 END PROCESS;
 –– other processes ommited
END exemplar;

A process with multiple random signals in its sensitivity list with internal boolean expres-

sions involving their instantaneous values will synthesize as combinational logic.

The implication of latches can be a pitfall when unintentional. The designer

must make sure to assign a value to each of a combinational process’s ”output” signals with

each execution of the process, otherwise combinational loops may be created. The code in

Figure 10 shows how this can happen.

Figure 10. Unintentional Combinational Loop

ARCHITECTURE loop OF simple IS
BEGIN
 wrong : PROCESS (data_in)
 BEGIN
 IF (data_in = ’1’) THEN
 data_out <= ’0’;
 END IF;
 END PROCESS;
END loop;

This is somewhat subtle, but note that whenever the process is triggered due to data_in

becoming zero, there is no action taken. This usually synthesizes to an OR gate with output

data_out and inputs data_in and data_out. The feedback in this implementation

is undesirable.

17

VHDL Finite State Machine Topologies

For FSM design, many process topologies yield desirable results given the

ideal synthesis tool. With the specific tools addressed by this paper, there are specific topolo-

gies which are recommended. Typically two processes are used, one combinational and one

sequential.

For a class A (combinational–output Mealy) FSM, the combinational process

is used to decode the next state and the current outputs given the current state and the inputs.

The synchronous process is used to clock the state bits. This type of FSM is not generated

by the BRUSEY20 computer program presented in this paper. When BRUSEY20 encoun-

ters output assignments in transitions as in Figure 3, it assumes the outputs to be registered.

Exemplar, PICA, and Alliance all support it. Examples of the Exemplar, PICA, and Alliance

styles for a class A implementation of the FSM in Figure 3 are given in Figures 11, 12, and

13 below.

18

Figure 11. Exemplar Class A (combinational–output Mealy) FSM

ARCHITECTURE exemplar_a OF lpf IS

 TYPE state_type IS (s0x, s0, s1x, s1);
 SIGNAL current_state, next_state : state_type;

BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 current_state <= s0;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 current_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (current_state, ena, din)
 BEGIN
 CASE current_state IS
 WHEN s0x =>
 IF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= s1;
 ELSE
 dout<=’0’;
 next_state <= s0x;
 END IF;
 WHEN s0 =>
 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’0’;
 next_state <= s0x;
 ELSE
 dout<=’0’;
 next_state <= s0;
 END IF;
 WHEN s1x =>
 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSE
 dout<=’1’;
 next_state <= s1x;
 END IF;
 WHEN s1 =>
 IF (ena = ’1’ AND din = ’0’) THEN

19

 dout <= ’1’;
 next_state <= s1x;
 ELSE
 dout<=’1’;
 next_state <= s1;
 END IF;
 END CASE;
 END PROCESS;
END exemplar_a;

Figure 12. PICA Class A (combinational–output Mealy) FSM

ARCHITECTURE pica_a OF lpf IS
 SIGNAL present_state, next_state : bitvec;
 LABEL registers, transitions;
BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 present_state <= ”00”; –– s0
 ELSIF (clk’RISING) THEN
 present_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (present_state, ena, din)
 BEGIN
 CASE present_state IS
 WHEN ”00” => –– s0
 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’0’;
 next_state <= ”01”; –– s0x
 ELSE
 dout <= ’0’;
 next_state <= ”00”; –– s0
 END IF;
 WHEN ”01” => –– s0x
 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= ”10”; –– s1
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= ”00”; –– s0
 ELSE
 dout <= ’0’;
 next_state <= ”01”; –– s0x
 END IF;
 WHEN ”10” => –– s1
 IF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’1’;
 next_state <= ”11”; –– s1x

20

 ELSE
 dout <= ’1’;
 next_state <= ”10”; –– s1
 END IF;
 WHEN ”11” => –– s1x
 IF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= ”00”; –– s0
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= ”10”; –– s1
 ELSE
 dout <= ’1’;
 next_state <= ”11”; –– s1x
 END IF;
 END CASE;
 END PROCESS;
END pica_a;

Figure 13. Alliance Class A (combinational–output Mealy) FSM

ARCHITECTURE alliance_a OF lpf IS
 TYPE state_type IS (s0, s0x, s1, s1x);

 –– pragma CLOCK clk
 –– pragma CUR_STATE current_state
 –– pragma NEX_STATE next_state

 SIGNAL current_state, next_state : state_type;
BEGIN
––
–– Synchronous State Registers
–– (Note synchronous reset)
––
 registers : PROCESS (clk)
 BEGIN
 IF (clk = ’1’ AND NOT clk’STABLE) THEN
 current_state <= next_state;
 END IF;
 END PROCESS;
––
–– Combinational State Transitions
––
 transitions : PROCESS (rstn, current_state, ena, din)
 BEGIN
 –– process to update the current state;
 IF (rstn = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSE
 CASE current_state IS
 WHEN s0 =>

21

 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’0’;
 next_state <= s0x;
 ELSE
 dout <= ’0’;
 next_state <= s0;
 END IF;
 WHEN s0x =>
 IF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSE
 dout <= ’0’;
 next_state <= s0x;
 END IF;
 WHEN s1 =>
 IF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’1’;
 next_state <= s1x;
 ELSE
 dout <= ’1’;
 next_state <= s1;
 END IF;
 WHEN s1x =>
 IF (ena = ’1’ AND din = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 dout <= ’1’;
 next_state <= s1;
 ELSE
 dout <= ’1’;
 next_state <= s1x;
 END IF;
 END CASE;
 END IF;
 END PROCESS;

END alliance_a;

22

For a class B (combinational–output Moore) FSM, the combinational pro-

cess decodes the next state based on current state and inputs, but only depends on the state

to decode the current outputs. It is supported by Exemplar, PICA, and Alliance in a style

specific to each tool. The Exemplar style of this type of FSM can be generated by the

BRUSEY20 computer program described in this paper. When the BRUSEY20 tool encoun-

ters output assignments in states, it assumes them to be combinational. Examples of the Ex-

emplar, PICA, and Alliance style implementations for the state diagram in Figure 2 are

shown in Figures 14, 15, and 16, respectively.

Figure 14. Exemplar Class B (combinational–output Moore) FSM

ARCHITECTURE exemplar_b OF lpf IS

 TYPE state_type IS (s0x, s0, s1x, s1);
 SIGNAL current_state, next_state : state_type;

BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 current_state <= s0;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 current_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (current_state, ena, din)
 BEGIN
 CASE current_state IS
 WHEN s0x =>
 dout<=’0’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s1;
 ELSE
 next_state <= s0x;
 END IF;
 WHEN s0 =>
 dout<=’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s0x;

23

 ELSE
 next_state <= s0;
 END IF;
 WHEN s1x =>
 dout<=’1’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSE
 next_state <= s1x;
 END IF;
 WHEN s1 =>
 dout<=’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s1x;
 ELSE
 next_state <= s1;
 END IF;
 END CASE;
 END PROCESS;
END exemplar_b;

Figure 15. PICA Class B (combinational–output Moore) FSM

ARCHITECTURE pica_b OF lpf IS
 SIGNAL present_state, next_state : bitvec;
 LABEL registers, transitions;
BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 present_state <= ”00”; –– s0
 ELSIF (clk’RISING) THEN
 present_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (present_state, ena, din)
 BEGIN
 CASE present_state IS
 WHEN ”00” => –– s0
 dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= ”01”; –– s0x
 ELSE
 next_state <= ”00”; –– s0
 END IF;
 WHEN ”01” => –– s0x
 dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN

24

 next_state <= ”10”; –– s1
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”00”; –– s0
 ELSE
 next_state <= ”01”; –– s0x
 END IF;
 WHEN ”10” => –– s1
 dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”11”; –– s1x
 ELSE
 next_state <= ”10”; –– s1
 END IF;
 WHEN ”11” => –– s1x
 dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”00”; –– s0
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_state <= ”10”; –– s1
 ELSE
 next_state <= ”11”; –– s1x
 END IF;
 END CASE;
 END PROCESS;
END pica_b;

Figure 16. Alliance Class B (combinational–output Moore) FSM

ARCHITECTURE alliance_b OF lpf IS
 TYPE state_type IS (s0, s0x, s1, s1x);

 –– pragma CLOCK clk
 –– pragma CUR_STATE current_state
 –– pragma NEX_STATE next_state

 SIGNAL current_state, next_state : state_type;
BEGIN
––
–– Synchronous State Registers
–– (Note synchronous reset)
––
 registers : PROCESS (clk)
 BEGIN
 IF (clk = ’1’ AND NOT clk’STABLE) THEN
 current_state <= next_state;
 END IF;
 END PROCESS;
––
–– Combinational State Transitions
––
 transitions : PROCESS (rstn, current_state, ena, din)
 BEGIN

25

 IF (rstn = ’0’) THEN
 dout <= ’0’;
 next_state <= s0;
 ELSE
 CASE current_state IS
 WHEN s0 =>
 dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s0x;
 ELSE
 next_state <= s0;
 END IF;
 WHEN s0x =>
 dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSE
 next_state <= s0x;
 END IF;
 WHEN s1 =>
 dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s1x;
 ELSE
 next_state <= s1;
 END IF;
 WHEN s1x =>
 dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s1;
 ELSE
 next_state <= s1x;
 END IF;
 END CASE;
 END IF;
 END PROCESS;

END alliance_b;

26

With a class C (registered–output Moore) FSM, description is possible with

only one sequential process which controls the outputs and steps the state bits. This type of

FSM is supported by Exemplar and PICA and is not directly supported by Alliance. The

BRUSEY20 program presented in this paper does not support this class of FSM. When

BRUSEY20 encounters output assignments in states such as in Figure 2, it assumes them to

be combinational. The Exemplar and PICA styles of the FSM in Figure 2 are shown in Fig-

ures 17 and 18.

Figure 17. Exemplar Class C (registered–output Moore) FSM

ARCHITECTURE exemplar_c OF lpf IS

 TYPE state_type IS (s0x, s0, s1x, s1);
 SIGNAL current_state, next_state : state_type;
 SIGNAL next_dout : std_logic;

BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 current_state <= s0;
 dout <= ’0’;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 current_state <= next_state;
 dout <= next_dout;
 END IF;
 END PROCESS;

 transitions : PROCESS (current_state, ena, din)
 BEGIN
 CASE current_state IS
 WHEN s0x =>
 next_dout<=’0’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s1;
 ELSE
 next_state <= s0x;
 END IF;
 WHEN s0 =>
 next_dout<=’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s0x;

27

 ELSE
 next_state <= s0;
 END IF;
 WHEN s1x =>
 next_dout<=’1’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s0;
 ELSE
 next_state <= s1x;
 END IF;
 WHEN s1 =>
 next_dout<=’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= s1x;
 ELSE
 next_state <= s1;
 END IF;
 END CASE;
 END PROCESS;
END exemplar_c;

Figure 18. PICA Class C (registered–output Moore) FSM

ARCHITECTURE pica_c OF lpf IS
 SIGNAL present_state, next_state : bitvec;
 SIGNAL next_dout : bit;
 LABEL registers, transitions;
BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 dout <= ’0’;
 present_state <= ”00”; –– s0
 ELSIF (clk’RISING) THEN
 dout <= next_dout;
 present_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (present_state, ena, din)
 BEGIN
 CASE present_state IS
 WHEN ”00” => –– s0
 next_dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= ”01”; –– s0x
 ELSE
 next_state <= ”00”; –– s0
 END IF;

28

 WHEN ”01” => –– s0x
 next_dout <= ’0’;
 IF (ena = ’1’ AND din = ’1’) THEN
 next_state <= ”10”; –– s1
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”00”; –– s0
 ELSE
 next_state <= ”01”; –– s0x
 END IF;
 WHEN ”10” => –– s1
 next_dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”11”; –– s1x
 ELSE
 next_state <= ”10”; –– s1
 END IF;
 WHEN ”11” => –– s1x
 next_dout <= ’1’;
 IF (ena = ’1’ AND din = ’0’) THEN
 next_state <= ”00”; –– s0
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_state <= ”10”; –– s1
 ELSE
 next_state <= ”11”; –– s1x
 END IF;
 END CASE;
 END PROCESS;
END pica_c;

29

A class A1 (registered output Mealy) FSM may have two processes, a se-

quential process for the states and outputs, and a combinational process for transitions. Ex-

emplar and PICA support this class, while Alliance does not. This type of FSM may be gen-

erated by the BRUSEY20 computer program presented in this paper. When BRUSEY20

encouters output assignments in transitions, it assumes them to be registered. The Exemplar

style is shown in Figure 19, while the PICA style is shown in Figure 20. In this implementa-

tion, an interim combinational signal is declared to feed a register for a given output.

Figure 19. Exemplar Class A1 (registered–output Mealy) FSM

ARCHITECTURE exemplar_a1 OF lpf IS

 TYPE state_type IS (s0x, s0, s1x, s1);
 SIGNAL current_state, next_state : state_type;
 SIGNAL next_dout : std_logic;

BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 dout <= ’0’;
 current_state <= s0;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 dout <= next_dout;
 current_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (current_state, ena, din)
 BEGIN
 CASE current_state IS
 WHEN s0x =>
 IF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’0’;
 next_state <= s0;
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_dout <= ’1’;
 next_state <= s1;
 ELSE
 next_dout<=’0’;
 next_state <= s0x;
 END IF;
 WHEN s0 =>
 IF (ena = ’1’ AND din = ’1’) THEN

30

 next_dout <= ’0’;
 next_state <= s0x;
 ELSE
 next_dout<=’0’;
 next_state <= s0;
 END IF;
 WHEN s1x =>
 IF (ena = ’1’ AND din = ’1’) THEN
 next_dout <= ’1’;
 next_state <= s1;
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’0’;
 next_state <= s0;
 ELSE
 next_dout<=’1’;
 next_state <= s1x;
 END IF;
 WHEN s1 =>
 IF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’1’;
 next_state <= s1x;
 ELSE
 next_dout<=’1’;
 next_state <= s1;
 END IF;
 END CASE;
 END PROCESS;
END exemplar_a1;

Figure 20. PICA Class A1 (registered–output Mealy) FSM

ARCHITECTURE pica_a1 OF lpf IS
 SIGNAL present_state, next_state : bitvec;
 SIGNAL next_dout : bit;
 LABEL registers, transitions;
BEGIN

 registers : PROCESS (clk, rstn)
 BEGIN
 IF (rstn = ’0’) THEN
 dout <= ’0’;
 present_state <= ”00”; –– s0
 ELSIF (clk’RISING) THEN
 dout <= next_dout;
 present_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (present_state, ena, din)
 BEGIN
 CASE present_state IS

31

 WHEN ”00” => –– s0
 IF (ena = ’1’ AND din = ’1’) THEN
 next_dout <= ’0’;
 next_state <= ”01”; –– s0x
 ELSE
 next_dout <= ’0’;
 next_state <= ”00”; –– s0
 END IF;
 WHEN ”01” => –– s0x
 IF (ena = ’1’ AND din = ’1’) THEN
 next_dout <= ’1’;
 next_state <= ”10”; –– s1
 ELSIF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’0’;
 next_state <= ”00”; –– s0
 ELSE
 next_dout <= ’0’;
 next_state <= ”01”; –– s0x
 END IF;
 WHEN ”10” => –– s1
 IF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’1’;
 next_state <= ”11”; –– s1x
 ELSE
 next_dout <= ’1’;
 next_state <= ”10”; –– s1
 END IF;
 WHEN ”11” => –– s1x
 IF (ena = ’1’ AND din = ’0’) THEN
 next_dout <= ’0’;
 next_state <= ”00”; –– s0
 ELSIF (ena = ’1’ AND din = ’1’) THEN
 next_dout <= ’1’;
 next_state <= ”10”; –– s1
 ELSE
 next_dout <= ’1’;
 next_state <= ”11”; –– s1x
 END IF;
 END CASE;
 END PROCESS;
END pica_a1;

As can be seen, the variations on the theme of FSM behavioral description

are many. The formats presented here are those recommended by the authors of their respec-

tive target tools. It is undoubtedly true that there are many more ways to describe the same

FSM with identical or better results with these and other tools.

32

PART 4

THE MECHANICS OF CONVERSION

A. PIC Graphics Description Input Format

The input to the BRUSEY20 computer program presented in this paper is a

subset of the TROFF PIC file format. The major object types used are listed below with their

meanings in the context of this process. Each line in the PIC input is a separate statement

unlike VHDL where multi–line statements are terminated with a semicolon. All locations

and measurements in the PIC input are specified in fixed point format. A circle in the PIC

input defines a state in the VHDL output. The format of the PIC circle statement is given

in Figure 21.

Figure 21. Circle
circle at XC,YC rad R

where XC,YC is the center of the circle and R is the radius. An arc or line in the input defines

a transition in the output. Only single–segment arcs and lines are supported. The format of

the arc statement is given in Figure 22.

Figure 22. Arc
arc {<–,–>} at XC,YC from XS,YS to XE,YE [cw]

where <– denotes that the arrow head is at the ”from” end in the statement and –> denotes

the arrow head is at the ”to” end. XC,YC is the center of the circle of which the arc is part,

XS,YS is the first endpoint of the arc, and XE,YE is the second endpoint. If cw appears at

the end of the statement, the arc swings clockwise between the first and second endpoints

instead of counter–clockwise. The format of the line statement is given in Figure 23.

Figure 23. Line
line {<–,–>} from XS,YS to XE,YE

33

where <– denotes that the arrow head is at the ”from” end in the statement and –> denotes

the arrow head is at the ”to” end. XS,YS is the first endpoint of the line and XE,YE is the

second endpoint. The format of the text string statement is given in Figure 24.

Figure 24. Text String

”[\sN][\fF]S[\fF]” at XO,YO [{ljust,rjust}]

where N is the font size, F is a font style, and XO,YO is the origin of the string. rjust or

ljust indicate right or left justification with respect the origin with a default of center justi-

fication if neither is given.

B. Internal Finite State Machine Data Base Structures

A set of data structures are used to store the FSM data base during

BRUSEY20 execution. Four structures types store states, transitions, and strings as follows.

Table II. State Structure

string structure pointer for state name initially blank

center location

radius

string structure pointer for first assignment in linked list for the state initially blank

first transition pointer in linked list for this state initially blank

next state pointer in overall linked list of states initially blank

34

Table III. Transition Structure

Center location

”From” location

”From” state pointer initially blank

”To” location

”To” state pointer initially blank

string structure pointer for conditional expression / output assignment initially blank

next transition pointer in overall linked list of transitions initially blank

next transition pointer in the linked list for the state initially blank

Table IV. String Structure

origin location

justification (left, center, right)

text string

next string structure pointer in overall linked list of strings initially blank

next string pointer in linked list for the state initially blank

Table V. Input and Output Signal Structure

identifier text
string

flag indicating whether the input will be the asynchronous reset signal
or whether the output will be registered

As an instance of each of the object type is encountered in the PIC input,

memory is allocated to store it. Additional instances are added in a linked list format. This

scheme allows the most flexible storage of the largest and most complicated FSMs possible

in the memory space available. There is a slight penalty in speed of execution, but no space

is wasted with empty object structures.

35

C. The Conversion Process

With the input and output formats and the internal data base structures pres-

ented, what remains to be described is the process employed by BRUSEY20 to generate be-

havioral VHDL from a PIC drawing.

In order to translate the input PIC file into VHDL, several steps are taken.

First, the input is read by the parser, the part of the BRUSEY20 program which recognizes

syntax and is triggered by language constructs. The parser populates the design data base

with the graphical input information, and then control is passed to the filler, which makes

calculations and relates the data base elements to one another. Next, the IO finder sifts

through all strings in the design to extract inputs and outputs using a VHDL lexical analysis

and grammar specification. The traverser operates next, traversing through all structure

instances and ultimately writing output based on the generated data base. The details of these

steps are expounded below.

Parsing PIC Graphics Description Input Format

The PIC input is parsed using a Flex– and Bison–based parser. Flex is a com-

puter program which takes in a description of the tokens to be found in the input and desired

actions and puts out C code to perform this lexical analysis. Bison is a computer program

that takes in a description of the grammar which the tokens are arranged in and puts out C

code to perform the parsing. The code generated by Bison calls the code generated by Flex.

Once the code has been generated, it may be compiled and included in a main program. This

portion of the process creates the linked lists of data structures as it parses the input. Only

the geometrical information available in the PIC input is stored during this step.

36

Filling the Design Data Base

The next step is to associate the instances created in the previous step with

one another. First, strings are associated with states based on the distance between the origin

of the string and the center of the state’s circle. The ratio between the distance from the center

to the string and the radius must be below a fixed value.

Next, conditional expression / output assignment strings are associated with

transitions. The origin of the string must be within a fixed distance from the midpoint of the

arc or line. The midpoint of the arc or line is calculated using geometrical methods and is

guaranteed to be on the curve or line. If a string is not found for a given transition, that transi-

tion is later flagged as the default for its ”from” state.

The transitions ends are then matched with states. The end of the transition

must be inside a circle concentric with the state’s circle, but with a radius larger by a fixed

amount. Connectivity is checked as described above in the description of state diagrams.

Next, each Moore output string is associated with a state which encompasses

its origin location. Strings which are not associated with states or transitions are ignored.

Identifying Inputs and Outputs

Each state and transition is processed by sending each associated string to a

secondary parser. This parser processes VHDL expressions and assignments and is based

on different Flex lexical analysis and Bison grammar files. In other words, there are two

parsers used by the BRUSEY20 program, a PIC parser and a VHDL parser. The VHDL pars-

er is given a starting token which identifies whether a given string is associated with a state

or a transition. The parser then scans transition and state strings seeking design inputs and

outputs. If an output is found in a transition, it is marked as registered to support a class A1

37

(registered–output Mealy) FSM. If an input is found in the asynchronous reset transition,

it is marked for inclusion in the sensitivity list of the registered process of the VHDL archi-

tecture. Outputs found in states are marked as non–registered to support a class B (combina-

tional–output Moore) FSM.

Generating VHDL Output

Only the generation of Exemplar–style behavioral code is described in this

section, as this is the only style supported for now. Generation of the other styles of behavior-

al code would be similar.

The first step in generating the behavioral VHDL output is to print the entity

header. The input and output signals are written, including the implicit clock signals with

their proper types (IN, OUT, or INOUT). INOUT types are generated when a signal appears

in both the list of inputs and the list of outputs generated above.

Next, the architecture is printed. An enumerated type is defined with names

of each of the states in the linked list. Signals for the current state and the next state are de-

clared, followed by any combinational output terms required for registered outputs.

The process used to reset the FSM and clock the registers is printed next. Any

input signals that were found in the reset transition are printed in the sensitivity list. State-

ments to advance the state are printed. If the FSM is a class A1 (registered–output Mealy)

FSM, statements to clock the associated output registers are printed.

Next, the process to decode the next state and next outputs is printed. Within

a CASE statement, a WHEN statement is printed for each state. Within the WHEN statement,

an algorithm is used to correctly print IF, THEN, ELSE statements to cover all transitions

leaving the given state and all associated outputs. Outputs are printed within IF statements

38

if the FSM is class A1, and outside the IF statement if the FSM is class B for those outputs.

If a default transition is found, its processing is deferred until all other transitions from the

state have been handled. This way, the default transition is printed within an ELSE statement

or alone if there is only one transition. The first transition is printed with an IF statement,

whereas additional transitions (except the default) are printed with ELSIF statements. Once

all transitions have been handled, the IF statement (if any) is capped off with an END IF.

Finally, the CASE statement and the process are closed and the architecture is ended.

39

PART 5

RESULTS

A. Description

The state diagram for the test case is the example in Figure 25. This design

is a class A1 (registered–output Mealy) implementation of a TPLH–TPHL stretcher. This

design delays turn–on and turn–off of the output based on the state of the input. Turn–on

delay is controlled by the number of states in the left column in the state diagram and turn–off

delay is controlled by the right column.

The test case state diagram was drawn with XFIG and exported to PIC for-

mat. Next, the BRUSEY20 computer program presented in this paper was run on the PIC

file to yield a behavioral VHDL file. The design was then synthesized using Exemplar’s

GALILEO to yield a structural VHDL output file. GALILEO was then used to synthesize

the design with one–hot state encoding in an Actel ACT2 device. Then, a schematic repre-

sentation of the structure was printed. As can be seen from the schematics below, the FSM

output, ”O”, is registered and there is one register for each state.

40

s0b

s0c

s0d

s0e s1a

s1b

s1c

s1d

s1e

s1f

s1g

I=’1’| O<=’1’;

I=’0’|O<=’1’;

I=’0’|O<=’1’;

I=’1’| O<=’0’;

I=’1’| O<=’0’;
I=’0’|O<=’1’;

I=’1’| O<=’0’;
I=’0’|O<=’1’;

I=’0’|O<=’1’;

I=’0’|O<=’1’;

I=’0’|O<=’0’;

s0a

|O<=’0’;

|O<=’0’;

|O<=’0’;

|O<=’0’;

I=’1’| O<=’0’;

|O<=’1’;

|O<=’1’;

|O<=’1’;

|O<=’1’;

|O<=’1’;

|O<=’1’;

rst_n=’0’|O<=’0’;

|O<=’0’;

|O<=’1’;

Figure 25. State Diagram for Test Case

41

B. PIC File Representation

The PIC file representation is shown in Figure 26.

Figure 26. PIC file for Test Case

.PS

.ps 10
arc –> at 2.126,5.992 from 2.657,6.529 to 2.657,5.455 cw
arc –> at 2.127,4.559 from 2.657,5.095 to 2.657,4.022 cw
arc –> at 2.126,3.127 from 2.657,3.664 to 2.657,2.590 cw
arc –> at 2.125,1.695 from 2.657,2.232 to 2.657,1.157 cw
arc –> at 3.420,5.267 from 1.969,3.861 to 1.969,6.673 cw
arc –> at 3.755,4.620 from 1.969,2.455 to 1.969,6.786 cw
arc –> at 3.929,3.927 from 1.969,0.992 to 2.025,6.899 cw
arc –> at 5.188,1.732 from 4.658,1.195 to 4.658,2.269 cw
arc –> at 5.187,3.165 from 4.658,2.628 to 4.658,3.701 cw
arc –> at 5.188,4.597 from 4.658,4.060 to 4.658,5.134 cw
arc <– at 2.556,6.024 from 2.025,6.561 to 2.025,5.487
arc –> at 5.189,8.841 from 4.658,8.304 to 4.658,9.379 cw
arc –> at 5.189,6.029 from 4.658,5.491 to 4.658,6.566 cw
arc –> at 5.143,7.463 from 4.612,6.925 to 4.612,8.000 cw
arc –> at 4.449,7.433 from 4.612,9.600 to 2.306,7.069
arc <– at 4.595,1.868 from 5.139,1.334 to 5.232,2.287
arc –> at 3.631,3.107 from 2.655,0.832 to 4.658,0.855
arc <– at 1.991,5.201 from 5.310,0.931 to 5.288,9.488
arc <– at 2.367,4.520 from 5.319,1.042 to 5.288,8.025
arc –> at 2.742,3.919 from 5.288,6.730 to 5.308,1.125 cw
arc –> at 3.285,3.244 from 5.288,5.268 to 5.288,1.219 cw
arc –> at 4.317,2.561 from 5.288,3.805 to 5.231,1.275 cw
arc <– at 2.868,7.045 from 2.474,7.081 to 2.676,6.698 cw
arc <– at 5.213,0.487 from 5.286,0.848 to 4.892,0.668 cw
circle at 2.343,6.707 rad 0.358
circle at 2.343,5.276 rad 0.358
circle at 2.343,3.844 rad 0.358
circle at 2.343,2.410 rad 0.358
circle at 2.343,0.979 rad 0.358
circle at 4.971,1.016 rad 0.358
circle at 4.971,2.448 rad 0.358
circle at 4.971,3.880 rad 0.358
circle at 4.971,8.125 rad 0.358
circle at 4.971,9.557 rad 0.358
circle at 4.971,5.313 rad 0.358
circle at 4.971,6.745 rad 0.358
line <– from 2.136,7.036 to 1.551,8.645
”\s10\fRs0b\fP” at 2.318,5.266
”\s10\fRs0c\fP” at 2.318,3.860
”\s10\fRs0d\fP” at 2.318,2.442
”\s10\fRs0e\fP” at 2.306,1.017
”\s10\fRs1b\fP” at 4.950,2.468
”\s10\fRs1c\fP” at 4.939,3.908

42

”\s10\fRs1d\fP” at 4.950,5.337
”\s10\fRs1e\fP” at 4.961,6.788
”\s10\fRs1f\fP” at 4.950,8.087
”\s10\fRs1g\fP” at 4.950,9.584
”\s10\fRI=’0’|O<=’1’;\fP” at 4.415,1.761 rjust
”\s10\fRI=’0’|O<=’1’;\fP” at 4.405,4.697 rjust
”\s10\fRI=’1’| O<=’0’;\fP” at 2.930,4.481 ljust
”\s10\fRI=’0’|O<=’1’;\fP” at 4.382,6.064 rjust
”\s10\fRI=’1’| O<=’0’;\fP” at 2.915,3.036 ljust
”\s10\fRI=’0’|O<=’1’;\fP” at 4.404,3.195 rjust
”\s10\fRI=’0’|O<=’1’;\fP” at 4.354,7.481 rjust
”\s10\fRs0a\fP” at 2.312,6.717
”\s10\fR|O<=’0’;\fP” at 0.960,4.556 ljust
”\s10\fR|O<=’0’;\fP” at 0.409,3.881 ljust
”\s10\fRI=’1’| O<=’0’;\fP” at 2.937,1.574 ljust
”\s10\fR|O<=’1’;\fP” at 5.876,2.599 rjust
”\s10\fR|O<=’1’;\fP” at 6.090,3.195 rjust
”\s10\fR|O<=’1’;\fP” at 6.506,3.814 rjust
”\s10\fR|O<=’1’;\fP” at 6.878,4.444 rjust
”\s10\fR|O<=’1’;\fP” at 7.350,5.209 rjust
”\s10\fR|O<=’1’;\fP” at 5.269,1.789 rjust
”\s10\fRrst_n=’0’|O<=’0’;\fP” at 1.804,7.740 rjust
”\s10\fRs1a\fP” at 4.950,1.022
”\s10\fRI=’1’| O<=’1’;\fP” at 3.656,0.684
”\s10\fRI=’0’|O<=’0’;\fP” at 2.812,8.897 rjust
”\s10\fRI=’0’|O<=’1’;\fP” at 4.444,8.897 rjust
”\s10\fRI=’1’| O<=’0’;\fP” at 2.925,6.028 ljust
”\s10\fR|O<=’0’;\fP” at 3.263,7.153 ljust
”\s10\fR|O<=’0’;\fP” at 1.800,6.028 ljust
”\s10\fR|O<=’0’;\fP” at 1.406,5.240 ljust
”\s10\fR|O<=’1’;\fP” at 5.344,0.234 ljust
.PE

C. BRUSEY20 Output

The BRUSEY20 output with full debugging turned on is given in Figure 27,

and the VHDL output is given in Figure 28.

Figure 27. BRUSEY20 Debug Output for Test Case

–– BRUSEY20 – PIC to VHDL Parser – v2.1
–– Copyright (C) 1995 by Tom Mayo
––
–– To contact the author: tcmayo@dsinfo.psf.lmco.com
––
–– Tom Mayo
–– 67 Wilson St.
–– Pittsfield, MA 01201
––

43

–– This program is free software; you can redistribute it and/or
–– modify
–– it under the terms of version 2 of the GNU General Public License
–– as
–– published by the Free Software Foundation.
––
–– This program is distributed in the hope that it will be useful,
–– but WITHOUT ANY WARRANTY; without even the implied warranty of
–– MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
–– GNU General Public License for more details.
––
–– You should have received a copy of the GNU General Public License
–– along with this program; if not, write to the Free Software
–– Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
––
–– Parsing PIC file...
–– Transition at (2.881, 5.992): (2.657, 6.529) –> (2.657, 5.455).
–– Transition at (2.881, 4.559): (2.657, 5.095) –> (2.657, 4.022).
–– Transition at (2.881, 3.127): (2.657, 3.664) –> (2.657, 2.590).
–– Transition at (2.881, 1.695): (2.657, 2.232) –> (2.657, 1.157).
–– Transition at (1.400, 5.267): (1.969, 3.861) –> (1.969, 6.673).
–– Transition at (0.948, 4.620): (1.969, 2.455) –> (1.969, 6.786).
–– Transition at (0.400, 3.961): (1.969, 0.992) –> (2.025, 6.899).
–– Transition at (4.434, 1.732): (4.658, 1.195) –> (4.658, 2.269).
–– Transition at (4.434, 3.165): (4.658, 2.628) –> (4.658, 3.701).
–– Transition at (4.434, 4.597): (4.658, 4.060) –> (4.658, 5.134).
–– Transition at (1.801, 6.024): (2.025, 5.487) –> (2.025, 6.561).
–– Transition at (4.433, 8.841): (4.658, 8.304) –> (4.658, 9.379).
–– Transition at (4.433, 6.029): (4.658, 5.491) –> (4.658, 6.566).
–– Transition at (4.387, 7.463): (4.612, 6.925) –> (4.612, 8.000).
–– Transition at (2.842, 8.897): (4.612, 9.600) –> (2.306, 7.069).
–– Transition at (5.354, 1.794): (5.232, 2.287) –> (5.139, 1.334).
–– Transition at (3.659, 0.632): (2.655, 0.832) –> (4.658, 0.855).
–– Transition at (7.399, 5.215): (5.288, 9.488) –> (5.310, 0.931).
–– Transition at (6.929, 4.541): (5.288, 8.025) –> (5.319, 1.042).
–– Transition at (6.535, 3.932): (5.288, 6.730) –> (5.308, 1.125).
–– Transition at (6.133, 3.244): (5.288, 5.268) –> (5.288, 1.219).
–– Transition at (5.895, 2.526): (5.288, 3.805) –> (5.231, 1.275).
–– Transition at (3.218, 7.230): (2.676, 6.698) –> (2.474, 7.081).
–– Transition at (5.366, 0.152): (4.892, 0.668) –> (5.286, 0.848).
–– State at (2.343, 6.707): radius 0.358.
–– State at (2.343, 5.276): radius 0.358.
–– State at (2.343, 3.844): radius 0.358.
–– State at (2.343, 2.410): radius 0.358.
–– State at (2.343, 0.979): radius 0.358.
–– State at (4.971, 1.016): radius 0.358.
–– State at (4.971, 2.448): radius 0.358.
–– State at (4.971, 3.880): radius 0.358.
–– State at (4.971, 8.125): radius 0.358.
–– State at (4.971, 9.557): radius 0.358.
–– State at (4.971, 5.313): radius 0.358.
–– State at (4.971, 6.745): radius 0.358.

44

–– Transition at (1.844, 7.840): (1.551, 8.645) –> (2.136, 7.036).
–– String at (2.318, 5.266): ”s0b”.
–– String at (2.318, 3.860): ”s0c”.
–– String at (2.318, 2.442): ”s0d”.
–– String at (2.306, 1.017): ”s0e”.
–– String at (4.950, 2.468): ”s1b”.
–– String at (4.939, 3.908): ”s1c”.
–– String at (4.950, 5.337): ”s1d”.
–– String at (4.961, 6.788): ”s1e”.
–– String at (4.950, 8.087): ”s1f”.
–– String at (4.950, 9.584): ”s1g”.
–– String at (4.415, 1.761): ”I=’0’|O<=’1’;”.
–– String at (4.405, 4.697): ”I=’0’|O<=’1’;”.
–– String at (2.930, 4.481): ”I=’1’| O<=’0’;”.
–– String at (4.382, 6.064): ”I=’0’|O<=’1’;”.
–– String at (2.915, 3.036): ”I=’1’| O<=’0’;”.
–– String at (4.404, 3.195): ”I=’0’|O<=’1’;”.
–– String at (4.354, 7.481): ”I=’0’|O<=’1’;”.
–– String at (2.312, 6.717): ”s0a”.
–– String at (0.960, 4.556): ”|O<=’0’;”.
–– String at (0.409, 3.881): ”|O<=’0’;”.
–– String at (2.937, 1.574): ”I=’1’| O<=’0’;”.
–– String at (5.876, 2.599): ”|O<=’1’;”.
–– String at (6.090, 3.195): ”|O<=’1’;”.
–– String at (6.506, 3.814): ”|O<=’1’;”.
–– String at (6.878, 4.444): ”|O<=’1’;”.
–– String at (7.350, 5.209): ”|O<=’1’;”.
–– String at (5.269, 1.789): ”|O<=’1’;”.
–– String at (1.804, 7.740): ”rst_n=’0’|O<=’0’;”.
–– String at (4.950, 1.022): ”s1a”.
–– String at (3.656, 0.684): ”I=’1’| O<=’1’;”.
–– String at (2.812, 8.897): ”I=’0’|O<=’0’;”.
–– String at (4.444, 8.897): ”I=’0’|O<=’1’;”.
–– String at (2.925, 6.028): ”I=’1’| O<=’0’;”.
–– String at (3.263, 7.153): ”|O<=’0’;”.
–– String at (1.800, 6.028): ”|O<=’0’;”.
–– String at (1.406, 5.240): ”|O<=’0’;”.
–– String at (5.344, 0.234): ”|O<=’1’;”.
–– 12 states, 25 transitions, 37 strings.
–– Filling data structures...
–– Name for state at (2.343, 6.707) is ”s0a”.
–– Name for state at (2.343, 5.276) is ”s0b”.
–– Name for state at (2.343, 3.844) is ”s0c”.
–– Name for state at (2.343, 2.410) is ”s0d”.
–– Name for state at (2.343, 0.979) is ”s0e”.
–– Name for state at (4.971, 1.016) is ”s1a”.
–– Name for state at (4.971, 2.448) is ”s1b”.
–– Name for state at (4.971, 3.880) is ”s1c”.
–– Name for state at (4.971, 8.125) is ”s1f”.
–– Name for state at (4.971, 9.557) is ”s1g”.
–– Name for state at (4.971, 5.313) is ”s1d”.
–– Name for state at (4.971, 6.745) is ”s1e”.

45

–– Condition for transition at (2.881, 5.992) is ”I=’1’| O<=’0’;”.
–– Starting new transition chain for state ”s0a”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0a”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0b”.
–– Condition for transition at (2.881, 4.559) is ”I=’1’| O<=’0’;”.
–– Starting new transition chain for state ”s0b”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0b”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0c”.
–– Condition for transition at (2.881, 3.127) is ”I=’1’| O<=’0’;”.
–– Starting new transition chain for state ”s0c”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0c”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0d”.
–– Condition for transition at (2.881, 1.695) is ”I=’1’| O<=’0’;”.
–– Starting new transition chain for state ”s0d”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0d”.
–– Transition ”I=’1’| O<=’0’;” from state ”s0e”.
–– Condition for transition at (1.400, 5.267) is ”|O<=’0’;”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Adding link 1 to transition chain for state ”s0c”.
–– Transition ”|O<=’0’;” from state ”s0c”.
–– Condition for transition at (0.948, 4.620) is ”|O<=’0’;”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Adding link 1 to transition chain for state ”s0d”.
–– Transition ”|O<=’0’;” from state ”s0d”.
–– Condition for transition at (0.400, 3.961) is ”|O<=’0’;”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Starting new transition chain for state ”s0e”.
–– Transition ”|O<=’0’;” from state ”s0e”.
–– Condition for transition at (4.434, 1.732) is ”I=’0’|O<=’1’;”.
–– Starting new transition chain for state ”s1a”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1a”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1b”.
–– Condition for transition at (4.434, 3.165) is ”I=’0’|O<=’1’;”.
–– Starting new transition chain for state ”s1b”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1b”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1c”.
–– Condition for transition at (4.434, 4.597) is ”I=’0’|O<=’1’;”.
–– Starting new transition chain for state ”s1c”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1c”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1d”.
–– Condition for transition at (1.801, 6.024) is ”|O<=’0’;”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Adding link 1 to transition chain for state ”s0b”.
–– Transition ”|O<=’0’;” from state ”s0b”.
–– Condition for transition at (4.433, 8.841) is ”I=’0’|O<=’1’;”.
–– Starting new transition chain for state ”s1f”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1f”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1g”.
–– Condition for transition at (4.433, 6.029) is ”I=’0’|O<=’1’;”.
–– Starting new transition chain for state ”s1d”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1d”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1e”.

46

–– Condition for transition at (4.387, 7.463) is ”I=’0’|O<=’1’;”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1f”.
–– Starting new transition chain for state ”s1e”.
–– Transition ”I=’0’|O<=’1’;” from state ”s1e”.
–– Condition for transition at (2.842, 8.897) is ”I=’0’|O<=’0’;”.
–– Transition ”I=’0’|O<=’0’;” from state ”s0a”.
–– Starting new transition chain for state ”s1g”.
–– Transition ”I=’0’|O<=’0’;” from state ”s1g”.
–– Condition for transition at (5.354, 1.794) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1b”.
–– Transition ”|O<=’1’;” from state ”s1b”.
–– Condition for transition at (3.659, 0.632) is ”I=’1’| O<=’1’;”.
–– Adding link 1 to transition chain for state ”s0e”.
–– Transition ”I=’1’| O<=’1’;” from state ”s0e”.
–– Transition ”I=’1’| O<=’1’;” from state ”s1a”.
–– Condition for transition at (7.399, 5.215) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1g”.
–– Transition ”|O<=’1’;” from state ”s1g”.
–– Condition for transition at (6.929, 4.541) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1f”.
–– Transition ”|O<=’1’;” from state ”s1f”.
–– Condition for transition at (6.535, 3.932) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1e”.
–– Transition ”|O<=’1’;” from state ”s1e”.
–– Condition for transition at (6.133, 3.244) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1d”.
–– Transition ”|O<=’1’;” from state ”s1d”.
–– Condition for transition at (5.895, 2.526) is ”|O<=’1’;”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Adding link 1 to transition chain for state ”s1c”.
–– Transition ”|O<=’1’;” from state ”s1c”.
–– Condition for transition at (3.218, 7.230) is ”|O<=’0’;”.
–– Adding link 1 to transition chain for state ”s0a”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Transition ”|O<=’0’;” from state ”s0a”.
–– Condition for transition at (5.366, 0.152) is ”|O<=’1’;”.
–– Adding link 1 to transition chain for state ”s1a”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Transition ”|O<=’1’;” from state ”s1a”.
–– Condition for transition at (1.844, 7.840) is
–– ”rst_n=’0’|O<=’0’;”.
–– Transition ”rst_n=’0’|O<=’0’;” from state ”s0a”.
–– Reset transition is ”rst_n=’0’|O<=’0’;”.
–– Finding inputs and outputs...
–– Parsing strings for state ”s0a”.
–– Parsing string 1: ” trans: I=’1’| O<=’0’;”.
–– Passing 22 bytes to the lexer.

47

–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 2: ” trans: |O<=’0’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s0b”.
–– Parsing string 3: ” trans: I=’1’| O<=’0’;”.
–– Passing 22 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 4: ” trans: |O<=’0’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s0c”.
–– Parsing string 5: ” trans: I=’1’| O<=’0’;”.
–– Passing 22 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal

48

–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 6: ” trans: |O<=’0’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s0d”.
–– Parsing string 7: ” trans: I=’1’| O<=’0’;”.
–– Passing 22 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 8: ” trans: |O<=’0’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s0e”.
–– Parsing string 9: ” trans: |O<=’0’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 10: ” trans: I=’1’| O<=’1’;”.
–– Passing 22 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator

49

–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1a”.
–– Parsing string 11: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 12: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1b”.
–– Parsing string 13: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 14: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1c”.
–– Parsing string 15: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”

50

–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 16: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1f”.
–– Parsing string 17: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 18: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1g”.
–– Parsing string 19: ” trans: I=’0’|O<=’0’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.

51

–– Parsing string 20: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1d”.
–– Parsing string 21: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 22: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing strings for state ”s1e”.
–– Parsing string 23: ” trans: I=’0’|O<=’1’;”.
–– Passing 21 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: identifier ”I”
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Parsing string 24: ” trans: |O<=’1’;”.
–– Passing 16 bytes to the lexer.
–– lexer: ok, starting a transition string.
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;

52

–– Passing 0 bytes to the lexer.
–– Parsing string 25: ” async: rst_n=’0’|O<=’0’;”.
–– Passing 25 bytes to the lexer.
–– lexer: ok, starting a async transition string.
–– lexer: identifier ”rst_n”
–– Adding input signal rst_n.
–– lexer: =
–– lexer: literal
–– lexer: |
–– lexer: identifier ”O”
–– lexer: less–than–or–equal or assignment operator
–– lexer: literal
–– lexer: ;
–– Passing 0 bytes to the lexer.
–– Generating VHDL...
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.
–– default transition, deferring.

53

Figure 28. BRUSEY20 VHDL Output for Test Case

––
–– The following VHDL code was generated by
–– BRUSEY20 – PIC to VHDL Parser – v2.1
–– Copyright (C) 1995 by Tom Mayo
––
–– To contact the author: tcmayo@dsinfo.psf.lmco.com
––
–– Tom Mayo
–– 67 Wilson St.
–– Pittsfield, MA 01201
––
–– This program is free software; you can redistribute it and/or
–– modify
–– it under the terms of version 2 of the GNU General Public License
–– as
–– published by the Free Software Foundation.
––
–– This program is distributed in the hope that it will be useful,
–– but WITHOUT ANY WARRANTY; without even the implied warranty of
–– MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
–– GNU General Public License for more details.
––
–– You should have received a copy of the GNU General Public License
–– along with this program; if not, write to the Free Software
–– Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
––
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY your_entity IS
 PORT (
 clk : IN std_logic;
 I : IN std_logic;
 rst_n : IN std_logic;
 O : OUT std_logic
);
END your_entity;

ARCHITECTURE exemplar OF your_entity IS

 TYPE state_type IS (s0a, s0b, s0c, s0d, s0e, s1a, s1b, s1c, s1f,
s1g, s1d, s1e);
 SIGNAL current_state, next_state : state_type;
 SIGNAL next_O : std_logic;

BEGIN

 registers : PROCESS (clk, rst_n)
 BEGIN
 IF (rst_n=’0’) THEN
 O<=’0’;

54

 current_state <= s0a;
 ELSIF (clk’EVENT AND clk = ’1’) THEN
 O <= next_O;
 current_state <= next_state;
 END IF;
 END PROCESS;

 transitions : PROCESS (current_state, I)
 BEGIN
 CASE current_state IS
 WHEN s0a =>
 IF (I=’1’) THEN
 next_O<=’0’;
 next_state <= s0b;
 ELSE
 next_O<=’0’;
 next_state <= s0a;
 END IF;
 WHEN s0b =>
 IF (I=’1’) THEN
 next_O<=’0’;
 next_state <= s0c;
 ELSE
 next_O<=’0’;
 next_state <= s0a;
 END IF;
 WHEN s0c =>
 IF (I=’1’) THEN
 next_O<=’0’;
 next_state <= s0d;
 ELSE
 next_O<=’0’;
 next_state <= s0a;
 END IF;
 WHEN s0d =>
 IF (I=’1’) THEN
 next_O<=’0’;
 next_state <= s0e;
 ELSE
 next_O<=’0’;
 next_state <= s0a;
 END IF;
 WHEN s0e =>
 IF (I=’1’) THEN
 next_O<=’1’;
 next_state <= s1a;
 ELSE
 next_O<=’0’;
 next_state <= s0a;
 END IF;
 WHEN s1a =>
 IF (I=’0’) THEN

55

 next_O<=’1’;
 next_state <= s1b;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1b =>
 IF (I=’0’) THEN
 next_O<=’1’;
 next_state <= s1c;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1c =>
 IF (I=’0’) THEN
 next_O<=’1’;
 next_state <= s1d;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1f =>
 IF (I=’0’) THEN
 next_O<=’1’;
 next_state <= s1g;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1g =>
 IF (I=’0’) THEN
 next_O<=’0’;
 next_state <= s0a;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1d =>
 IF (I=’0’) THEN
 next_O<=’1’;
 next_state <= s1e;
 ELSE
 next_O<=’1’;
 next_state <= s1a;
 END IF;
 WHEN s1e =>
 IF (I=’0’) THEN
 next_O<=’1’;
 next_state <= s1f;
 ELSE
 next_O<=’1’;

56

 next_state <= s1a;
 END IF;
 END CASE;
 END PROCESS;
END exemplar;

D. Exemplar Output

The Exemplar output is given in Figure 29, and the schematic representation

is given in Figure 30.

Figure 29. Exemplar VHDL Output for Test Case

––
–– Program
–– gc woj.vhd woj.rtl –input_format=VHDL –target=behav
–– –output_format=VHDL –are
–– a –effort=Standard –macro –wire_tree=Worst –report=slack_table
–– –report=cell_
–– usage –report=device_util –encoding=OneHot –VHDL_93
–– –modgen_library=generic
–– –status_pipe=8
–– Version V3.0.2
–– Definition of YOUR_ENTITY
––
–– VHDL Concurrent Statements, created by
–– Exemplar Logic’s Galileo
–– Tue Jul 25 10:53:00 1995
––
––
––

library IEEE ;
use IEEE.STD_LOGIC_1164.all ;
library EXEMPLAR ;
use EXEMPLAR.EXEMPLAR_1164.all ;

entity YOUR_ENTITY is
 port (
 CLK : IN std_logic ;
 I : IN std_logic ;
 RST_N : IN std_logic ;
 O : OUT std_logic) ;
end YOUR_ENTITY ;

architecture EXEMPLAR of YOUR_ENTITY is
 signal
 CURRENT_STATE_11, n8, CURRENT_STATE_10, CURRENT_STATE_9,
 CURRENT_STATE_8, CURRENT_STATE_7, CURRENT_STATE_6,

57

CURRENT_STATE_5,
 CURRENT_STATE_4, CURRENT_STATE_3, CURRENT_STATE_2,
CURRENT_STATE_1,
 CURRENT_STATE_0, n126, NEXT_O, NEXT_STATE_5, NEXT_STATE_0,
n596, n597,
 n598, n599, n600, n601, n602, n603, n604, n605, n745, n749,
n750, n751
 : std_logic ;

begin
 O <= n126 ;
 n8 <= (not RST_N) ;
 NEXT_O <= (I and n745) or (n751) or (n750) or (n749) ;
 NEXT_STATE_5 <= (I and n751) or (I and n750) or (I and n749) or
(I and
 n745) ;
 NEXT_STATE_0 <= (not I and n745) or (not I and CURRENT_STATE_0)
or (not I
 and CURRENT_STATE_1) or (not I and CURRENT_STATE_2) or (not I
and
 CURRENT_STATE_3) ;
 n596 <= (I and CURRENT_STATE_0) ;
 n597 <= (I and CURRENT_STATE_1) ;
 n598 <= (I and CURRENT_STATE_2) ;
 n599 <= (I and CURRENT_STATE_3) ;
 n600 <= (not I and CURRENT_STATE_5) ;
 n601 <= (not I and CURRENT_STATE_6) ;
 n602 <= (not I and CURRENT_STATE_11) ;
 n603 <= (not I and CURRENT_STATE_8) ;
 n604 <= (not I and CURRENT_STATE_7) ;
 n605 <= (not I and CURRENT_STATE_10) ;
 n745 <= (CURRENT_STATE_4) or (CURRENT_STATE_9) ;
 n749 <= (CURRENT_STATE_10) or (CURRENT_STATE_11) ;
 n750 <= (CURRENT_STATE_7) or (CURRENT_STATE_8) ;
 n751 <= (CURRENT_STATE_5) or (CURRENT_STATE_6) ;
 DFFPCE (data=>n605,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_11) ;
 DFFPCE (data=>n604,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_10) ;
 DFFPCE (data=>n603,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_9) ;
 DFFPCE (data=>n602,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_8) ;
 DFFPCE (data=>n601,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_7) ;
 DFFPCE (data=>n600,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_6) ;
 DFFPCE
(data=>NEXT_STATE_5,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_5) ;
 DFFPCE (data=>n599,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_4) ;

58

 DFFPCE (data=>n598,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_3) ;
 DFFPCE (data=>n597,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_2) ;
 DFFPCE (data=>n596,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_1) ;
 DFFPCE
(data=>NEXT_STATE_0,preset=>n8,clear=>’0’,enable=>’1’,clk=>CLK,q=>
 CURRENT_STATE_0) ;
 DFFPCE
(data=>NEXT_O,preset=>’0’,clear=>n8,enable=>’1’,clk=>CLK,q=>n126
) ;

end EXEMPLAR ;

Figure 30. Exemplar Schematic Output for Test Case

See the following three pages.

59

60

61

62

PART 6

DISCUSSION AND CONCLUSIONS

A. Use of the Algorithm

Using the BRUSEY20 program presented in this paper stands to make the

FSM design and documentation process easier. The designer need only draw the state dia-

gram once. The diagram can then be converted using BRUSEY20 into behavioral VHDL

and used in the actual design. The diagram can also be included without modification in de-

sign documentation.

B. Limitations

The BRUSEY20 program, as implemented at this time, has several limita-

tions which restrict its usefulness. These limitations are listed in the order they appear in the

program as written.

� The geometric associations in parsing the PIC input are not ideal. For exam-
ple, the state name must be in the center of the state circle, and transition ex-
pressions must be within a fixed distance from the midpoint of the transition.

� There is no way to specify prioritization of transitions. This would reduce ex-
pression complexity.

� Signals in expressions and assignments may only be logic type, i.e. no vec-
tors, integers, enumerated types, etc.

� Output FSMs of registered–output Moore and combinational–output Mealy
types are not supported.

� The output styles for PICA’s VCOMP and VSIM and for Alliance have not
been implemented yet.

In order to improve the deficiencies above, the steps below could be taken.

� Tolerances used for association of strings with states and transitions and of
transitions with states could be dynamically based on the dimensions of the
objects in question.

� String syntax or line style ordering could be used to denote transition prioriti-
zation.

63

� The VHDL parser and the I/O data structure could be enhanced to account for
different types (i.e. vectors, integers, enumerated types) of inputs and outputs.

� The VHDL–generating traverser could be enhanced to support class A and C
FSMs. Registered–output Moore FSMs could be supported by adding an in-
ternal combinational signal and clocking outputs in the registered process.
Combinational–output Mealy FSMs could be supported by eliminating the
steps in the algorithm which add the internal signal.

� Additional downstream synthesis and simulation tool VHDL output styles
could be supported by modifying the traverser and adding a run time parame-
ter which indicates what style is desired.

C. Future Directions

The user interface to the BRUSEY20 program is somewhat cumbersome in

terms of input and output file names as well as run time options. Better handling in this regard

could be achieved with a graphical push–button type interface. The user could fill in a form

with the desired input and output names and activate check boxes to select options. The name

of the entity and architecture could also be specified.

There are many State Machine capture tools such as BRUSEY20 available

commercially. The capabilities of these commercial tools are more complete than those of

the BRUSEY20 program, mainly with respect to integration with the actual drawing pro-

gram. It would be beneficial to improve the BRUSEY20 tool in this regard.

The steps in the FSM capture process with BRUSEY20 are currently

� Draw the FSM using XFIG,

� Run BRUSEY20,

� Run a gate–level synthesis or simulation tool (Exemplar, PICA, Alliance, or
another tool), and

� Run a silicon floorplanner to generate fuse files or an ASIC map.

Integration of these steps into one user interface would make this process easier to follow.

64

PART 7

LITERATURE CITED

1Brian W. Kernighan, ”PIC – A Graphics Language for Typesetting User
Manual,” Bell Laboratories Computing Science Technical Report No. 116,
(May 1991).

2Robert Mendes da Costa, ”Teaching Engineers a New Design Paradigm,”
 Electronic Design, December 5, 1991, p. 60.

3William I. Fletcher, An Engineering Approach to Digital Design,
(Englewood Cliffs, NJ: Prentice–Hall, 1980), pp. 293–95.

4Fletcher, p. 336.

5Thomas R. Blakeslee, Digital Design with Standard MSI and LSI,
(New York: John Wiley & Sons, 1975), pp 117–120.

6Morris M. Mano, Computer Engineering Hardware Design, (Englewood
Cliffs, NJ: Prentice Hall, 1988), pp. 137–138.

7Exemplar Logic, Inc., HDL Synthesis Reference Manual, (Berkeley,
CA: Exemplar Logic, Inc., 1994), pp. 3–14 – 3–17.

8Alan R. Martello, VCOMP Manual Pages, (1988), pp. 1–3. and Martello,
VSIM Manual Page, (1988), pp. 1–6.

9CAO–VLSI team at Laboratoire MASI, Universite Pierre et Marie Curie
(PARIS VI), SYF Manual Pages, (Paris: electronic, 1993), pp. 1–2.

10CAO–VLSI team at Laboratoire MASI, Universite Pierre et Marie Curie
(PARIS VI), FSM Manual Pages, (Paris: electronic, 1993), pp. 1–5.

65

APPENDIX

BRUSEY20 MANUAL PAGE

BRUSEY20(1) USER COMMANDS BRUSEY20(1)

NAME
 brusey20, zzz – Convert TROFF PIC state diagrams into
 behavioral VHDL

SYNOPSIS
 brusey20 design

 zzz [–h] [–dO ...] [–sO ...] [–ve]

DESCRIPTION
 zzz parses a state diagram in TROFF PIC format and creates
 behavioral VHDL suitable for simulation and synthesis by
 downstream tools. PIC input is read from standard input,
 VHDL output is written to standard output, and error and any
 debug output is written to standard error.

 brusey20 runs zzz with full debugging turned on and
 design.pic as standard input, design.vhd as standard output,
 and design.out as standard error.

OPTIONS
 –h Print help information and quit.

 –dO Turn on the debugging specified by O. (See below.)

 –da Turn all debugging on.

 –dp Turn PIC parse debugging on.

 –df Turn data structure fill debugging on.

 –de Turn expression parse debugging on.

 –di Turn I/O find debugging on.

 –dv Turn VHDL code generation debugging on.

 –sO Turn on synchronizing specified by O. (See below.)

 –sr Reset synchronously. Not yet implemented.

 –so If an output is Moore, make it registered. If Mealy,
 make it combinational. Not yet implemented.

66

 –ve Generate Explicit default state transitions. Not yet
 implemented.

SEE ALSO
 Thomas Clayton Mayo, Converting State Diagrams into Syn–
 thesizable VHDL, August, 1995.

BUGS
 The geometric associations in parsing the PIC input are not
 ideal. For example, the state name must be in the center of
 the state circle, and transition expressions must be within
 a fixed distance from the midpoint of the transition.

 There is no way to specify prioritization of transitions.
 This would reduce expression complexity.

 Signals in expressions and assignments may only be logic
 type, i.e. no vectors, integers, enumerated types, etc.

 Output FSMs of registered–output Moore and combinational–
 output Mealy types are not yet supported.

 The output styles for PICA’s VCOMP and VSIM and for Alliance
 have not been implemented yet.

DIAGNOSTICS
 Many.

WARNING
 brusey20 overwrites design.vhd and design.out without con–
 firmation.

